Your browser doesn't support javascript.
loading
Loss of DNA Damage Response in Neuroblastoma and Utility of a PARP Inhibitor.
Takagi, Masatoshi; Yoshida, Misa; Nemoto, Yoshino; Tamaichi, Hiroyuki; Tsuchida, Rika; Seki, Masafumi; Uryu, Kumiko; Nishii, Rina; Miyamoto, Satoshi; Saito, Masahiro; Hanada, Ryoji; Kaneko, Hideo; Miyano, Satoru; Kataoka, Keisuke; Yoshida, Kenichi; Ohira, Miki; Hayashi, Yasuhide; Nakagawara, Akira; Ogawa, Seishi; Mizutani, Shuki; Takita, Junko.
Afiliación
  • Takagi M; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
  • Yoshida M; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
  • Nemoto Y; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
  • Tamaichi H; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
  • Tsuchida R; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
  • Seki M; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
  • Uryu K; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
  • Nishii R; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
  • Miyamoto S; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
  • Saito M; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
  • Hanada R; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
  • Kaneko H; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
  • Miyano S; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
  • Kataoka K; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
  • Yoshida K; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
  • Ohira M; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
  • Hayashi Y; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
  • Nakagawara A; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
  • Ogawa S; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
  • Mizutani S; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
  • Takita J; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Cente
J Natl Cancer Inst ; 109(11)2017 11 01.
Article en En | MEDLINE | ID: mdl-29059438
Background: Neuroblastoma (NB) is the most common solid tumor found in children, and deletions within the 11q region are observed in 11% to 48% of these tumors. Notably, such tumors are associated with poor prognosis; however, little is known regarding the molecular targets located in 11q. Methods: Genomic alterations of ATM , DNA damage response (DDR)-associated genes located in 11q ( MRE11A, H2AFX , and CHEK1 ), and BRCA1, BARD1, CHEK2, MDM2 , and TP53 were investigated in 45 NB-derived cell lines and 237 fresh tumor samples. PARP (poly [ADP-ribose] polymerase) inhibitor sensitivity of NB was investigated in in vitro and invivo xenograft models. All statistical tests were two-sided. Results: Among 237 fresh tumor samples, ATM, MRE11A, H2AFX , and/or CHEK1 loss or imbalance in 11q was detected in 20.7% of NBs, 89.8% of which were stage III or IV. An additional 7.2% contained ATM rare single nucleotide variants (SNVs). Rare SNVs in DDR-associated genes other than ATM were detected in 26.4% and were mutually exclusive. Overall, samples with SNVs and/or copy number alterations in these genes accounted for 48.4%. ATM-defective cells are known to exhibit dysfunctions in homologous recombination repair, suggesting a potential for synthetic lethality by PARP inhibition. Indeed, 83.3% NB-derived cell lines exhibited sensitivity to PARP inhibition. In addition, NB growth was markedly attenuated in the xenograft group receiving PARP inhibitors (sham-treated vs olaprib-treated group; mean [SD] tumor volume of sham-treated vs olaprib-treated groups = 7377 [1451] m 3 vs 298 [312] m 3 , P = .001, n = 4). Conclusions: Genomic alterations of DDR-associated genes including ATM, which regulates homologous recombination repair, were observed in almost half of NBs, suggesting that synthetic lethality could be induced by treatment with a PARP inhibitor. Indeed, DDR-defective NB cell lines were sensitive to PARP inhibitors. Thus, PARP inhibitors represent candidate NB therapeutics.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 / 7_ODS3_muertes_prevenibles_nacidos_ninos Problema de salud: 2_muertes_prevenibles / 7_non_communicable_diseases / 7_nutrition Asunto principal: Ftalazinas / Piperazinas / Cromosomas Humanos Par 11 / Eliminación de Gen / Reparación del ADN / Inhibidores de Poli(ADP-Ribosa) Polimerasas / Neuroblastoma Límite: Animals / Child / Humans Idioma: En Revista: J Natl Cancer Inst Año: 2017 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 / 7_ODS3_muertes_prevenibles_nacidos_ninos Problema de salud: 2_muertes_prevenibles / 7_non_communicable_diseases / 7_nutrition Asunto principal: Ftalazinas / Piperazinas / Cromosomas Humanos Par 11 / Eliminación de Gen / Reparación del ADN / Inhibidores de Poli(ADP-Ribosa) Polimerasas / Neuroblastoma Límite: Animals / Child / Humans Idioma: En Revista: J Natl Cancer Inst Año: 2017 Tipo del documento: Article
...