Engineering of a membrane-triggered activity switch in coagulation factor VIIa.
Proc Natl Acad Sci U S A
; 114(47): 12454-12459, 2017 11 21.
Article
en En
| MEDLINE
| ID: mdl-29109275
Recombinant factor VIIa (FVIIa) variants with increased activity offer the promise to improve the treatment of bleeding episodes in patients with inhibitor-complicated hemophilia. Here, an approach was adopted to enhance the activity of FVIIa by selectively optimizing substrate turnover at the membrane surface. Under physiological conditions, endogenous FVIIa engages its cell-localized cofactor tissue factor (TF), which stimulates activity through membrane-dependent substrate recognition and allosteric effects. To exploit these properties of TF, a covalent complex between FVIIa and the soluble ectodomain of TF (sTF) was engineered by introduction of a nonperturbing cystine bridge (FVIIa Q64C-sTF G109C) in the interface. Upon coexpression, FVIIa Q64C and sTF G109C spontaneously assembled into a covalent complex with functional properties similar to the noncovalent wild-type complex. Additional introduction of a FVIIa-M306D mutation to uncouple the sTF-mediated allosteric stimulation of FVIIa provided a final complex with FVIIa-like activity in solution, while exhibiting a two to three orders-of-magnitude increase in activity relative to FVIIa upon exposure to a procoagulant membrane. In a mouse model of hemophilia A, the complex normalized hemostasis upon vascular injury at a dose of 0.3 nmol/kg compared with 300 nmol/kg for FVIIa.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Terapia Biológica
/
Tromboplastina
/
Ingeniería de Proteínas
/
Factor VIIa
/
Hemofilia A
Tipo de estudio:
Prognostic_studies
Límite:
Animals
/
Female
/
Humans
/
Male
Idioma:
En
Revista:
Proc Natl Acad Sci U S A
Año:
2017
Tipo del documento:
Article
País de afiliación:
Dinamarca