Your browser doesn't support javascript.
loading
Transcriptome responses of Streptococcus mutans to peroxide stress: identification of novel antioxidant pathways regulated by Spx.
Kajfasz, Jessica K; Ganguly, Tridib; Hardin, Emily L; Abranches, Jacqueline; Lemos, José A.
Afiliación
  • Kajfasz JK; Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, 32608, USA.
  • Ganguly T; Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, 32608, USA.
  • Hardin EL; Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, 32608, USA.
  • Abranches J; Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, 32608, USA.
  • Lemos JA; Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, 32608, USA. jlemos@dental.ufl.edu.
Sci Rep ; 7(1): 16018, 2017 11 22.
Article en En | MEDLINE | ID: mdl-29167560
ABSTRACT
The oxidative stress regulator Spx is ubiquitously found among Gram-positive bacteria. Previously, we reported identification of two Spx proteins in Streptococcus mutans - SpxA1 was the primary activator of oxidative stress genes whereas SpxA2 served a backup role. Here, we used RNA sequencing to uncover the scope of the H2O2 (peroxide)-stress regulon and to further explore the significance of Spx regulation in S. mutans. The transcriptome data confirmed the relationship between Spx and genes typically associated with oxidative stress, but also identified novel genes and metabolic pathways controlled by Spx during peroxide stress. While individual inactivation of newly identified peroxide stress genes had modest or no obvious consequences to bacterial survival, a phenotype enhancement screen using the ∆spxA1 strain as background for creation of double mutants revealed that four of the five genes inactivated were required for stress survival. Physiological and biochemical assays validated, at least in part, the transcriptome data indicating that SpxA1 coordinates transcriptional changes during peroxide stress that modify global metabolism and facilitate production of antioxidants. Collectively, our findings unraveled the scope of the peroxide stress regulon and expand the repertoire of oxidative stress genes in S. mutans, shedding new light on the role of Spx regulation.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Streptococcus mutans / Peróxido de Hidrógeno / Antioxidantes Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Sci Rep Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Streptococcus mutans / Peróxido de Hidrógeno / Antioxidantes Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Sci Rep Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos
...