Your browser doesn't support javascript.
loading
SMART Design of a Bulk-Capped Supramolecular Segment for the Assembly into Organic Interdigital Lipid Bilayer-Like (ILB) Nanosheets.
Li, Yin-Xiang; Wang, Sha-Sha; Yu, Yang; Zhang, He; Wang, Wu-You; Yang, Ru-Qian; Xie, Ling-Hai; Liu, Feng; Lin, Zong-Qiong; Shi, Nai-En; Sun, Li-Tao; Huang, Wei.
Afiliación
  • Li YX; Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 W
  • Wang SS; Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 W
  • Yu Y; Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 W
  • Zhang H; Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 W
  • Wang WY; Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 W
  • Yang RQ; SEU-FEI Nano-Pico Center and Key Lab of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, P. R. China.
  • Xie LH; Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 W
  • Liu F; Department of Physics and Astronomy, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
  • Lin ZQ; Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.
  • Shi NE; Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 W
  • Sun LT; SEU-FEI Nano-Pico Center and Key Lab of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, P. R. China.
  • Huang W; Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 W
Small ; 14(6)2018 02.
Article en En | MEDLINE | ID: mdl-29235730
ABSTRACT
Rational molecular design for the organic nanocrystal morphology still remains a challenge due to the structural diversity and complicated weak intermolecular interactions. In this work, a typical attractor-repulsor molecule N,N-diphenyl-4-(9-phenyl-fluoren-9-yl) phenylamine (TPA-PF) is designed to explore a general assembly strategy for 2D nanocrystals. Via an interdigital lipid bilayer-like (ILB) molecular packing mode, large-sized lamellar 2D nanosheets are obtained with a lengthwidththickness ratio as ≈250010001. The d-spacing of the largest (001) plane is 1.32 nm, which equals to the thickness of a single interdigital stacking layer. The synergetic effect of the attractive supramolecular segment (TPA) and the repulsive bulky group (PF) is supposed to be the critical factor for the ILB packing that leads to the 2D structures. The attractor-repulsor molecule design is expected to be an effective strategy for the growth of 2D nanocrystals based on small organic molecules.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2018 Tipo del documento: Article
...