Your browser doesn't support javascript.
loading
Two Residues in NSP9 Contribute to the Enhanced Replication and Pathogenicity of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus.
Zhao, Kuan; Gao, Jia-Cong; Xiong, Jun-Yao; Guo, Jin-Chao; Yang, Yong-Bo; Jiang, Cheng-Gang; Tang, Yan-Dong; Tian, Zhi-Jun; Cai, Xue-Hui; Tong, Guang-Zhi; An, Tong-Qing.
Afiliación
  • Zhao K; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
  • Gao JC; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
  • Xiong JY; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
  • Guo JC; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
  • Yang YB; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
  • Jiang CG; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
  • Tang YD; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
  • Tian ZJ; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
  • Cai XH; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
  • Tong GZ; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
  • An TQ; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China antongqing@caas.cn.
J Virol ; 92(7)2018 04 01.
Article en En | MEDLINE | ID: mdl-29321316
ABSTRACT
Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) possesses greater replicative capacity and pathogenicity than classical PRRSV. However, the factors that lead to enhanced replication and pathogenicity remain unclear. In our study, an alignment of all available full-length sequences of North American-type PRRSVs (n = 204) revealed two consistent amino acid mutations that differed between HP-PRRSV and classical PRRSV and were located at positions 519 and 544 in nonstructural protein 9. Next, a series of mutant viruses with either single or double amino acid replacements were generated from HP-PRRSV HuN4 and classical PRRSV CH-1a infectious cDNA clones. Deletion of either of the amino acids led to a complete loss of virus viability. In both Marc-145 and porcine alveolar macrophages, the replicative efficiencies of mutant viruses based on HuN4 were reduced compared to the parent, whereas the replication level of CH-1a-derived mutant viruses was increased. Plaque growth assays showed clear differences between mutant and parental viruses. In infected piglets, the pathogenicity of HuN4-derived mutant viruses, assessed through clinical symptoms, viral load in sera, histopathology examination, and thymus atrophy, was reduced. Our results indicate that the amino acids at positions 519 and 544 in NSP9 are involved in the replication efficiency of HP-PRRSV and contribute to enhanced pathogenicity. This study is the first to identify specific amino acids involved in PRRSV replication or pathogenicity. These findings will contribute to understanding the molecular mechanisms of PRRSV replication and pathogenicity, leading to better therapeutic and prognostic options to combat the virus.IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS), caused by porcine reproductive and respiratory syndrome virus (PRRSV), is a significant threat to the global pig industry. Highly pathogenic PRRSV (HP-PRRSV) first emerged in China in 2006 and has subsequently spread across Asia, causing considerable damage to local economies. HP-PRRSV strains possess a greater replication capacity and higher pathogenicity than classical PRRSV strains, although the mechanisms that underlie these characteristics are unclear. In the present study, we identified two mutations in HP-PRRSV strains that distinguish them from classical PRRSV strains. Further experiments that swapped the two mutations in an HP-PRRSV strain and a classical PRRSV strain demonstrated that they are involved in the replication efficiency of the virus and its virulence. Our findings have important implications for understanding the molecular mechanisms of PRRSV replication and pathogenicity and also provide new avenues of research for the study of other viruses.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Replicación Viral / Proteínas no Estructurales Virales / Virus del Síndrome Respiratorio y Reproductivo Porcino / Síndrome Respiratorio y de la Reproducción Porcina / Mutación Missense Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Virol Año: 2018 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Replicación Viral / Proteínas no Estructurales Virales / Virus del Síndrome Respiratorio y Reproductivo Porcino / Síndrome Respiratorio y de la Reproducción Porcina / Mutación Missense Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Virol Año: 2018 Tipo del documento: Article País de afiliación: China
...