Your browser doesn't support javascript.
loading
Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance.
Fazakerley, Daniel J; Chaudhuri, Rima; Yang, Pengyi; Maghzal, Ghassan J; Thomas, Kristen C; Krycer, James R; Humphrey, Sean J; Parker, Benjamin L; Fisher-Wellman, Kelsey H; Meoli, Christopher C; Hoffman, Nolan J; Diskin, Ciana; Burchfield, James G; Cowley, Mark J; Kaplan, Warren; Modrusan, Zora; Kolumam, Ganesh; Yang, Jean Yh; Chen, Daniel L; Samocha-Bonet, Dorit; Greenfield, Jerry R; Hoehn, Kyle L; Stocker, Roland; James, David E.
Afiliación
  • Fazakerley DJ; Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia.
  • Chaudhuri R; Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia.
  • Yang P; School of Mathematics and Statistics, University of Sydney, Camperdown, Australia.
  • Maghzal GJ; Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia.
  • Thomas KC; Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia.
  • Krycer JR; Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia.
  • Humphrey SJ; Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia.
  • Parker BL; Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia.
  • Fisher-Wellman KH; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, United States.
  • Meoli CC; Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia.
  • Hoffman NJ; Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia.
  • Diskin C; Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia.
  • Burchfield JG; Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia.
  • Cowley MJ; The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, Australia.
  • Kaplan W; Peter Wills Bioinformatics Centre, Garvan Institute of Medical Research, Darlinghurst, Australia.
  • Modrusan Z; Genentech Inc., South San Francisco, United States.
  • Kolumam G; Genentech Inc., South San Francisco, United States.
  • Yang JY; School of Mathematics and Statistics, University of Sydney, Camperdown, Australia.
  • Chen DL; Garvan Institute of Medical Research, Darlinghurst, Australia.
  • Samocha-Bonet D; Garvan Institute of Medical Research, Darlinghurst, Australia.
  • Greenfield JR; Garvan Institute of Medical Research, Darlinghurst, Australia.
  • Hoehn KL; School of Biotechnology and Biomedical Sciences, University of New South Wales, Sydney, Australia.
  • Stocker R; Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia.
  • James DE; St Vincent's Clinical School, University of New South Wales, Sydney, Australia.
Elife ; 72018 02 06.
Article en En | MEDLINE | ID: mdl-29402381
ABSTRACT
Insulin resistance in muscle, adipocytes and liver is a gateway to a number of metabolic diseases. Here, we show a selective deficiency in mitochondrial coenzyme Q (CoQ) in insulin-resistant adipose and muscle tissue. This defect was observed in a range of in vitro insulin resistance models and adipose tissue from insulin-resistant humans and was concomitant with lower expression of mevalonate/CoQ biosynthesis pathway proteins in most models. Pharmacologic or genetic manipulations that decreased mitochondrial CoQ triggered mitochondrial oxidants and insulin resistance while CoQ supplementation in either insulin-resistant cell models or mice restored normal insulin sensitivity. Specifically, lowering of mitochondrial CoQ caused insulin resistance in adipocytes as a result of increased superoxide/hydrogen peroxide production via complex II. These data suggest that mitochondrial CoQ is a proximal driver of mitochondrial oxidants and insulin resistance, and that mechanisms that restore mitochondrial CoQ may be effective therapeutic targets for treating insulin resistance.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ataxia / Resistencia a la Insulina / Tejido Adiposo / Ubiquinona / Oxidantes / Debilidad Muscular / Enfermedades Mitocondriales / Mitocondrias / Músculos Tipo de estudio: Diagnostic_studies Límite: Animals / Humans Idioma: En Revista: Elife Año: 2018 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ataxia / Resistencia a la Insulina / Tejido Adiposo / Ubiquinona / Oxidantes / Debilidad Muscular / Enfermedades Mitocondriales / Mitocondrias / Músculos Tipo de estudio: Diagnostic_studies Límite: Animals / Humans Idioma: En Revista: Elife Año: 2018 Tipo del documento: Article País de afiliación: Australia
...