Your browser doesn't support javascript.
loading
Comparative study on antibody immobilization strategies for efficient circulating tumor cell capture.
Ates, Hatice Ceren; Ozgur, Ebru; Kulah, Haluk.
Afiliación
  • Ates HC; Department of Micro and Nanotechnology, Middle East Technical University, Universiteler Mahallesi, Dumlupinar Bulvari No: 1, Cankaya, Ankara 06800, Turkey and Mikro Biyosistemler Electronics Inc., Mustafa Kemal Mahallesi, Dumlupinar Bulvari, No: 280-B, Cankaya, Ankara 06530, Turkey.
  • Ozgur E; Mikro Biyosistemler Electronics, Inc., Mustafa Kemal Mahallesi, Dumlupinar Bulvari, No: 280-B, Cankaya, Ankara 06530, Turkey.
  • Kulah H; Department of Electrical and Electronics Engineering, Middle East Technical University, Universiteler Mahallesi, Dumlupinar Bulvari No: 1, Cankaya, Ankara 06800, Turkey; Department of Micro and Nanotechnology, Middle East Technical University, Universiteler Mahallesi, Dumlupinar Bulvari No: 1, Cankaya, Ankara 06800, Turkey; and Mikro Biyosistemler Electronics, Inc., Mustafa Kemal Mahallesi, Dumlupinar Bulvari, No: 280-B, Cankaya, Ankara 06530, Turkey.
Biointerphases ; 13(2): 021001, 2018 03 23.
Article en En | MEDLINE | ID: mdl-29571263
ABSTRACT
Methods for isolation and quantification of circulating tumor cells (CTCs) are attracting more attention every day, as the data for their unprecedented clinical utility continue to grow. However, the challenge is that CTCs are extremely rare (as low as 1 in a billion of blood cells) and a highly sensitive and specific technology is required to isolate CTCs from blood cells. Methods utilizing microfluidic systems for immunoaffinity-based CTC capture are preferred, especially when purity is the prime requirement. However, antibody immobilization strategy significantly affects the efficiency of such systems. In this study, two covalent and two bioaffinity antibody immobilization methods were assessed with respect to their CTC capture efficiency and selectivity, using an anti-epithelial cell adhesion molecule (EpCAM) as the capture antibody. Surface functionalization was realized on plain SiO2 surfaces, as well as in microfluidic channels. Surfaces functionalized with different antibody immobilization methods are physically and chemically characterized at each step of functionalization. MCF-7 breast cancer and CCRF-CEM acute lymphoblastic leukemia cell lines were used as EpCAM positive and negative cell models, respectively, to assess CTC capture efficiency and selectivity. Comparisons reveal that bioaffinity based antibody immobilization involving streptavidin attachment with glutaraldehyde linker gave the highest cell capture efficiency. On the other hand, a covalent antibody immobilization method involving direct antibody binding by N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC)-N-hydroxysuccinimide (NHS) reaction was found to be more time and cost efficient with a similar cell capture efficiency. All methods provided very high selectivity for CTCs with EpCAM expression. It was also demonstrated that antibody immobilization via EDC-NHS reaction in a microfluidic channel leads to high capture efficiency and selectivity.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Células Sanguíneas / Separación Celular / Proteínas Inmovilizadas / Molécula de Adhesión Celular Epitelial / Anticuerpos Antineoplásicos / Células Neoplásicas Circulantes Límite: Humans Idioma: En Revista: Biointerphases Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2018 Tipo del documento: Article País de afiliación: Turquía

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Células Sanguíneas / Separación Celular / Proteínas Inmovilizadas / Molécula de Adhesión Celular Epitelial / Anticuerpos Antineoplásicos / Células Neoplásicas Circulantes Límite: Humans Idioma: En Revista: Biointerphases Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2018 Tipo del documento: Article País de afiliación: Turquía
...