Your browser doesn't support javascript.
loading
Correlating structural and photochemical heterogeneity in cyanobacteriochrome NpR6012g4.
Lim, Sunghyuk; Yu, Qinhong; Gottlieb, Sean M; Chang, Che-Wei; Rockwell, Nathan C; Martin, Shelley S; Madsen, Dorte; Lagarias, J Clark; Larsen, Delmar S; Ames, James B.
Afiliación
  • Lim S; Department of Chemistry, University of California, Davis, CA 95616.
  • Yu Q; Department of Chemistry, University of California, Davis, CA 95616.
  • Gottlieb SM; Department of Chemistry, University of California, Davis, CA 95616.
  • Chang CW; Department of Chemistry, University of California, Davis, CA 95616.
  • Rockwell NC; Department of Molecular and Cellular Biology, University of California, Davis, CA 95616.
  • Martin SS; Department of Molecular and Cellular Biology, University of California, Davis, CA 95616.
  • Madsen D; Department of Chemistry, University of California, Davis, CA 95616.
  • Lagarias JC; Department of Molecular and Cellular Biology, University of California, Davis, CA 95616 jclagarias@ucdavis.edu dlarsen@ucdavis.edu jbames@ucdavis.edu.
  • Larsen DS; Department of Chemistry, University of California, Davis, CA 95616; jclagarias@ucdavis.edu dlarsen@ucdavis.edu jbames@ucdavis.edu.
  • Ames JB; Department of Chemistry, University of California, Davis, CA 95616; jclagarias@ucdavis.edu dlarsen@ucdavis.edu jbames@ucdavis.edu.
Proc Natl Acad Sci U S A ; 115(17): 4387-4392, 2018 04 24.
Article en En | MEDLINE | ID: mdl-29632180
ABSTRACT
Phytochrome photoreceptors control plant growth, development, and the shade avoidance response that limits crop yield in high-density agricultural plantings. Cyanobacteriochromes (CBCRs) are distantly related photosensory proteins that control cyanobacterial metabolism and behavior in response to light. Photoreceptors in both families reversibly photoconvert between two photostates via photoisomerization of linear tetrapyrrole (bilin) chromophores. Spectroscopic and biochemical studies have demonstrated heterogeneity in both photostates, but the structural basis for such heterogeneity remains unclear. We report solution NMR structures for both photostates of the red/green CBCR NpR6012g4 from Nostoc punctiforme In addition to identifying structural changes accompanying photoconversion, these structures reveal structural heterogeneity for residues Trp655 and Asp657 in the red-absorbing NpR6012g4 dark state, yielding two distinct environments for the phycocyanobilin chromophore. We use site-directed mutagenesis and fluorescence and absorbance spectroscopy to assign an orange-absorbing population in the NpR6012g4 dark state to the minority configuration for Asp657. This population does not undergo full, productive photoconversion, as shown by time-resolved spectroscopy and absorption spectroscopy at cryogenic temperature. Our studies thus elucidate the spectral and photochemical consequences of structural heterogeneity in a member of the phytochrome superfamily, insights that should inform efforts to improve photochemical or fluorescence quantum yields in the phytochrome superfamily.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fitocromo / Proteínas Bacterianas / Nostoc Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fitocromo / Proteínas Bacterianas / Nostoc Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2018 Tipo del documento: Article
...