Your browser doesn't support javascript.
loading
A cure-rate model for Q-learning: Estimating an adaptive immunosuppressant treatment strategy for allogeneic hematopoietic cell transplant patients.
Moodie, Erica E M; Stephens, David A; Alam, Shomoita; Zhang, Mei-Jie; Logan, Brent; Arora, Mukta; Spellman, Stephen; Krakow, Elizabeth F.
Afiliación
  • Moodie EEM; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, H3A 1A2, Canada.
  • Stephens DA; Department of Mathematics and Statistics, McGill University, Montreal, QC, H3A 1A2, Canada.
  • Alam S; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, H3A 1A2, Canada.
  • Zhang MJ; Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
  • Logan B; Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
  • Arora M; Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA.
  • Spellman S; Center for International Blood and Marrow Transplant Research, Minneapolis, MN, 55401, USA.
  • Krakow EF; Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
Biom J ; 61(2): 442-453, 2019 03.
Article en En | MEDLINE | ID: mdl-29766558
Cancers treated by transplantation are often curative, but immunosuppressive drugs are required to prevent and (if needed) to treat graft-versus-host disease. Estimation of an optimal adaptive treatment strategy when treatment at either one of two stages of treatment may lead to a cure has not yet been considered. Using a sample of 9563 patients treated for blood and bone cancers by allogeneic hematopoietic cell transplantation drawn from the Center for Blood and Marrow Transplant Research database, we provide a case study of a novel approach to Q-learning for survival data in the presence of a potentially curative treatment, and demonstrate the results differ substantially from an implementation of Q-learning that fails to account for the cure-rate.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 / 2_ODS3 Problema de salud: 1_doencas_nao_transmissiveis / 2_muertes_prematuras_enfermedades_notrasmisibles Asunto principal: Bioestadística / Trasplante de Células Madre Hematopoyéticas / Aprendizaje Automático / Inmunosupresores Tipo de estudio: Etiology_studies Límite: Humans Idioma: En Revista: Biom J Año: 2019 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 / 2_ODS3 Problema de salud: 1_doencas_nao_transmissiveis / 2_muertes_prematuras_enfermedades_notrasmisibles Asunto principal: Bioestadística / Trasplante de Células Madre Hematopoyéticas / Aprendizaje Automático / Inmunosupresores Tipo de estudio: Etiology_studies Límite: Humans Idioma: En Revista: Biom J Año: 2019 Tipo del documento: Article País de afiliación: Canadá
...