A cure-rate model for Q-learning: Estimating an adaptive immunosuppressant treatment strategy for allogeneic hematopoietic cell transplant patients.
Biom J
; 61(2): 442-453, 2019 03.
Article
en En
| MEDLINE
| ID: mdl-29766558
Cancers treated by transplantation are often curative, but immunosuppressive drugs are required to prevent and (if needed) to treat graft-versus-host disease. Estimation of an optimal adaptive treatment strategy when treatment at either one of two stages of treatment may lead to a cure has not yet been considered. Using a sample of 9563 patients treated for blood and bone cancers by allogeneic hematopoietic cell transplantation drawn from the Center for Blood and Marrow Transplant Research database, we provide a case study of a novel approach to Q-learning for survival data in the presence of a potentially curative treatment, and demonstrate the results differ substantially from an implementation of Q-learning that fails to account for the cure-rate.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Contexto en salud:
1_ASSA2030
/
2_ODS3
Problema de salud:
1_doencas_nao_transmissiveis
/
2_muertes_prematuras_enfermedades_notrasmisibles
Asunto principal:
Bioestadística
/
Trasplante de Células Madre Hematopoyéticas
/
Aprendizaje Automático
/
Inmunosupresores
Tipo de estudio:
Etiology_studies
Límite:
Humans
Idioma:
En
Revista:
Biom J
Año:
2019
Tipo del documento:
Article
País de afiliación:
Canadá