Reelin controls the positioning of brainstem serotonergic raphe neurons.
PLoS One
; 13(7): e0200268, 2018.
Article
en En
| MEDLINE
| ID: mdl-30001399
Serotonin (5-HT) acts as both a morphogenetic factor during early embryonic development and a neuromodulator of circuit plasticity in the mature brain. Dysregulation of serotonin signaling during critical periods is involved in developmental neurological disorders, such as schizophrenia and autism. In this study we focused on the consequences of defect reelin signaling for the development of the brainstem serotonergic raphe system. We observed that reelin signaling components are expressed by serotonergic neurons during the critical period of their lateral migration. Further, we found that reelin signaling is important for the normal migration of rostral, but not caudal hindbrain raphe nuclei and that reelin deficiency results in the malformation of the paramedian raphe nucleus and the lateral wings of the dorsal raphe nuclei. Additionally, we showed that serotonergic neurons projections to laminated brain structures were severely altered. With this study, we propose that the perturbation of canonical reelin signaling interferes with the orientation of tangentially, but not radially, migrating brainstem 5-HT neurons. Our results open the window for further studies on the interaction of reelin and serotonin and the pathogenesis of neurodevelopmental disorders.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Tronco Encefálico
/
Núcleos del Rafe
/
Serina Endopeptidasas
/
Moléculas de Adhesión Celular Neuronal
/
Proteínas de la Matriz Extracelular
/
Neuronas Serotoninérgicas
/
Proteínas del Tejido Nervioso
Límite:
Animals
Idioma:
En
Revista:
PLoS One
Asunto de la revista:
CIENCIA
/
MEDICINA
Año:
2018
Tipo del documento:
Article
País de afiliación:
Alemania