Your browser doesn't support javascript.
loading
Preparation and Characterization of Tetrahydrocurcumin-Loaded Cellulose Acetate Phthalate/Polyethylene Glycol Electrospun Nanofibers.
Rramaswamy, Ravikumar; Mani, Ganesh; Venkatachalam, Senthil; Venkata Yasam, Ramesh; Rajendran, J C Bose; Hyun Tae, Jang.
Afiliación
  • Rramaswamy R; Department of Advanced Materials Science and Engineering, Hanseo University, 360, Daegok-ri, Seosan-Si, Chungcheongnam-do, 356 706, South Korea.
  • Mani G; Department of Chemical Engineering, Hanseo University, 360, Daegok-ri, Seosan-Si, Chungcheongnam-do, 356 706, South Korea.
  • Venkatachalam S; Department of Chemical Engineering, Hanseo University, 360, Daegok-ri, Seosan-Si, Chungcheongnam-do, 356 706, South Korea.
  • Venkata Yasam R; Department of Pharmaceutics, JSS College of Pharmacy, Elk Hill, Rocklands, Ooty, The Nilgiris, Tamil Nadu, 643 001, India.
  • Rajendran JCB; Department of Pharmaceutics, JSS College of Pharmacy, Elk Hill, Rocklands, Ooty, The Nilgiris, Tamil Nadu, 643 001, India.
  • Hyun Tae J; Department of Radiology, Stanford University School of Medicine, Stanford, California, USA.
AAPS PharmSciTech ; 19(7): 3000-3008, 2018 Oct.
Article en En | MEDLINE | ID: mdl-30047034
ABSTRACT
A simple composite electrospun nanofiber of cellulose acetate phthalate (CAP)-polyethylene glycol (PEG) loaded with tetrahydrocurcumin (THC) was developed in this study, and the in vitro diffusion of THC was evaluated. The nanofibers were characterized by scanning electron microscopy, powder X-ray diffraction (PXRD), Fourier-transform infrared spectroscopy (FT-IR), and differential scanning calorimetry (DSC). The formulated nanofiber (NF) with THC has smooth morphology with diameter of around 300-500 nm. The complete entrapment and dispersion of THC was observed from the results of PXRD and DSC due to the loss of THC crystalline property. Further, FT-IR demonstrated that the vibration bands for the polymers used were dominant over the THC, and the vibrational bands of THC were not observed from the final formulation. The drug entrapment by the final CAP + PEG NF was found to be 95.5% with the high swelling index. From the in vitro release study, it was found that the formulated THC-loaded CAP + PEG NF has followed anomalous mechanism, demonstrating both diffusion and swelling controlled modes. The drug release extended up to 12 h with a final cumulative release of 94.24%.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polietilenglicoles / Celulosa / Curcumina / Nanofibras Idioma: En Revista: AAPS PharmSciTech Asunto de la revista: FARMACOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: Corea del Sur

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polietilenglicoles / Celulosa / Curcumina / Nanofibras Idioma: En Revista: AAPS PharmSciTech Asunto de la revista: FARMACOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: Corea del Sur
...