Your browser doesn't support javascript.
loading
A novel high-throughput assay for respiration in isolated brain microvessels reveals impaired mitochondrial function in the aged mice.
Sure, Venkata N; Sakamuri, Siva S V P; Sperling, Jared A; Evans, Wesley R; Merdzo, Ivan; Mostany, Ricardo; Murfee, Walter L; Busija, David W; Katakam, Prasad V G.
Afiliación
  • Sure VN; Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
  • Sakamuri SSVP; Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
  • Sperling JA; Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
  • Evans WR; Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
  • Merdzo I; Tulane Brain Institute, Tulane University, 1430 Tulane Avenue; Room 3554C, 8683, New Orleans, LA, 70112, USA.
  • Mostany R; Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
  • Murfee WL; Department of Pharmacology, University of Mostar School of Medicine, Mostar, Bosnia and Herzegovina.
  • Busija DW; Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
  • Katakam PVG; Tulane Brain Institute, Tulane University, 1430 Tulane Avenue; Room 3554C, 8683, New Orleans, LA, 70112, USA.
Geroscience ; 40(4): 365-375, 2018 08.
Article en En | MEDLINE | ID: mdl-30074132
ABSTRACT
Cerebral blood flow (CBF) is uniquely regulated by the anatomical design of the cerebral vasculature as well as through neurovascular coupling. The process of directing the CBF to meet the energy demands of neuronal activity is referred to as neurovascular coupling. Microvasculature in the brain constitutes the critical component of the neurovascular coupling. Mitochondria provide the majority of ATP to meet the high-energy demand of the brain. Impairment of mitochondrial function plays a central role in several age-related diseases such as hypertension, ischemic brain injury, Alzheimer's disease, and Parkinson disease. Interestingly, microvessels and small arteries of the brain have been the focus of the studies implicating the vascular mechanisms in several age-related neurological diseases. However, the role of microvascular mitochondrial dysfunction in age-related diseases remains unexplored. To date, high-throughput assay for measuring mitochondrial respiration in microvessels is lacking. The current study presents a novel method to measure mitochondrial respiratory parameters in freshly isolated microvessels from mouse brain ex vivo using Seahorse XFe24 Analyzer. We validated the method by demonstrating impairments of mitochondrial respiration in cerebral microvessels isolated from old mice compared to the young mice. Thus, application of mitochondrial respiration studies in microvessels will help identify novel vascular mechanisms underlying a variety of age-related neurological diseases.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Consumo de Oxígeno / Envejecimiento / Circulación Cerebrovascular / Microvasos / Ensayos Analíticos de Alto Rendimiento Tipo de estudio: Diagnostic_studies Límite: Animals Idioma: En Revista: Geroscience Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Consumo de Oxígeno / Envejecimiento / Circulación Cerebrovascular / Microvasos / Ensayos Analíticos de Alto Rendimiento Tipo de estudio: Diagnostic_studies Límite: Animals Idioma: En Revista: Geroscience Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos
...