Your browser doesn't support javascript.
loading
Nonsmooth Convex Optimization for Structured Illumination Microscopy Image Reconstruction.
Boulanger, Jérôme; Pustelnik, Nelly; Condat, Laurent; Sengmanivong, Lucie; Piolot, Tristan.
Afiliación
  • Boulanger J; CNRS UMR144, F-75248 Paris, France.
  • Pustelnik N; Institut Curie, F-75248 Paris, France.
  • Condat L; Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
  • Sengmanivong L; Laboratoire de Physique ENS de Lyon.
  • Piolot T; CNRS UMR5672, Université Lyon I, France.
Inverse Probl ; 34(9): 095004, 2018 Sep.
Article en En | MEDLINE | ID: mdl-30083025
In this paper, we propose a new approach for structured illumination microscopy image reconstruction. We first introduce the principles of this imaging modality and describe the forward model. We then propose the minimization of nonsmooth convex objective functions for the recovery of the unknown image. In this context, we investigate two data-fitting terms for Poisson-Gaussian noise and introduce a new patch-based regularization method. This approach is tested against other regularization approaches on a realistic benchmark. Finally, we perform some test experiments on images acquired on two different microscopes.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Inverse Probl Año: 2018 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Inverse Probl Año: 2018 Tipo del documento: Article País de afiliación: Francia
...