Your browser doesn't support javascript.
loading
Combinatorial Synthesis and High-Throughput Characterization of Fe-V-O Thin-Film Materials Libraries for Solar Water Splitting.
Kumari, Swati; Gutkowski, Ramona; Junqueira, João R C; Kostka, Aleksander; Hengge, Katharina; Scheu, Christina; Schuhmann, Wolfgang; Ludwig, Alfred.
Afiliación
  • Kumari S; Chair for MEMS Materials , Institute for Materials, Ruhr-Universität Bochum , 44801 Bochum , Germany.
  • Gutkowski R; Analytical Chemistry-Center for Electrochemical Sciences (CES) , Ruhr-Universität Bochum , 44801 Bochum , Germany.
  • Junqueira JRC; Analytical Chemistry-Center for Electrochemical Sciences (CES) , Ruhr-Universität Bochum , 44801 Bochum , Germany.
  • Kostka A; Center for Interface-Dominated High-Performance Materials (ZGH) , Ruhr-Universität Bochum , 44801 Bochum Germany.
  • Hengge K; Max-Planck-Institut für Eisenforschung GmbH , Max-Planck Straße 1 , D-40237 Düsseldorf , Germany.
  • Scheu C; Max-Planck-Institut für Eisenforschung GmbH , Max-Planck Straße 1 , D-40237 Düsseldorf , Germany.
  • Schuhmann W; Analytical Chemistry-Center for Electrochemical Sciences (CES) , Ruhr-Universität Bochum , 44801 Bochum , Germany.
  • Ludwig A; Materials Research Department , Ruhr-Universität Bochum , 44801 Bochum , Germany.
ACS Comb Sci ; 20(9): 544-553, 2018 09 10.
Article en En | MEDLINE | ID: mdl-30102852
ABSTRACT
The search for suitable materials for solar water splitting is addressed with combinatorial material science methods. Thin film Fe-V-O materials libraries were synthesized using combinatorial reactive magnetron cosputtering and subsequent annealing in air. The design of the libraries comprises a combination of large compositional gradients (from Fe10V90O x to Fe79V21O x) and thickness gradients (from 140 to 425 nm). These material libraries were investigated by high-throughput characterization techniques in terms of composition, structure, optical, and photoelectrochemical properties to establish correlations between composition, thickness, crystallinity, microstructure, and photocurrent density. Results show the presence of the Fe2V4O13 phase from ∼11 to 42 at. % Fe (toward low-Fe region) and the FeVO4 phase from ∼37 to 79 at. % Fe (toward Fe-rich region). However, as a third phase, Fe2O3 is present throughout the compositional gradients (from low-Fe to Fe-rich region). Material compositions with increasing crystallinity of the FeVO4 phase show enhanced photocurrent densities (∼160 to 190 µA/cm2) throughout the thickness gradients whereas compositions with the Fe2V4O13 phase show comparatively low photocurrent densities (∼28 µA/cm2). The band gap energies of Fe-V-O films were inferred from Tauc plots. The highest photocurrent density of ∼190 µA/cm2 was obtained for films with ∼54 to 66 at. % Fe for the FeVO4 phase with ∼2.04 eV for the indirect and ∼2.80 eV for the direct band gap energies.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Óxidos / Vanadio / Agua / Técnicas Químicas Combinatorias / Bibliotecas de Moléculas Pequeñas / Hierro Idioma: En Revista: ACS Comb Sci Año: 2018 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Óxidos / Vanadio / Agua / Técnicas Químicas Combinatorias / Bibliotecas de Moléculas Pequeñas / Hierro Idioma: En Revista: ACS Comb Sci Año: 2018 Tipo del documento: Article País de afiliación: Alemania
...