Your browser doesn't support javascript.
loading
Morphological and Biophysical Determinants of the Intracellular and Extracellular Waveforms in Nigral Dopaminergic Neurons: A Computational Study.
López-Jury, Luciana; Meza, Rodrigo C; Brown, Matthew T C; Henny, Pablo; Canavier, Carmen C.
Afiliación
  • López-Jury L; Laboratorio de Neuroanatomía, Departamento de Anatomía, and Centro Interdisciplinario de Neurociencia, NeuroUC, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, 8330023, Chile.
  • Meza RC; Department of Cell Biology and Anatomy and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112.
  • Brown MTC; Laboratorio de Neuroanatomía, Departamento de Anatomía, and Centro Interdisciplinario de Neurociencia, NeuroUC, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, 8330023, Chile.
  • Henny P; Centro Interdisciplinario de Neurociencia de Valparaíso CINV and Millennium Nucleus of Biology of Neuropsychiatric Disorders NuMIND, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile 2360102, and.
  • Canavier CC; Medical Research Council Anatomical Neuropharmacology Unit, University of Oxford, Oxford OX1 3TH, United Kingdom.
J Neurosci ; 38(38): 8295-8310, 2018 09 19.
Article en En | MEDLINE | ID: mdl-30104340
ABSTRACT
Action potentials (APs) in nigral dopaminergic neurons often exhibit two separate components the first reflecting spike initiation in the dendritically located axon initial segment (AIS) and the second the subsequent dendro-somatic spike. These components are separated by a notch in the ascending phase of the somatic extracellular waveform and in the temporal derivative of the somatic intracellular waveform. Still, considerable variability exists in the presence and magnitude of the notch across neurons. To systematically address the contribution of AIS, dendritic and somatic compartments to shaping the two-component APs, we modeled APs of previously in vivo electrophysiologically characterized and 3D-reconstructed male mouse and rat dopaminergic neurons. A parsimonious two-domain model, with high (AIS) and lower (dendro-somatic) Na+ conductance, reproduced the notch in the temporal derivatives, but not in the extracellular APs, regardless of morphology. The notch was only revealed when somatic active currents were reduced, constraining the model to three domains. Thus, an initial AIS spike is followed by an actively generated spike by the axon-bearing dendrite (ABD), in turn followed mostly passively by the soma. The transition from being a source compartment for the AIS spike to a source compartment for the ABD spike satisfactorily explains the extracellular somatic notch. Larger AISs and thinner ABD (but not soma-to-AIS distance) accentuate the AIS component. We conclude that variability in AIS size and ABD caliber explains variability in AP extracellular waveform and separation of AIS and dendro-somatic components, given the presence of at least three functional domains with distinct excitability characteristics.SIGNIFICANCE STATEMENT Midbrain dopamine neurons make an important contribution to circuits mediating motivation and movement. Understanding the basic rules that govern the electrical activity of single dopaminergic neurons is therefore essential to reveal how they ultimately contribute to movement and motivation as well as what goes wrong in associated disorders. Our computational study focuses on the generation and propagation of action potentials and shows that different morphologies and excitability characteristics of the cell body, dendrites and proximal axon can explain the diversity of action potentials shapes in this population. These compartments likely make differential contributions both to normal dopaminergic signaling and could potentially underlie pathological dopaminergic signaling implicated in addiction, schizophrenia, Parkinson's disease, and other disorders.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador / Potenciales de Acción / Sustancia Negra / Neuronas Dopaminérgicas / Modelos Neurológicos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Neurosci Año: 2018 Tipo del documento: Article País de afiliación: Chile

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador / Potenciales de Acción / Sustancia Negra / Neuronas Dopaminérgicas / Modelos Neurológicos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Neurosci Año: 2018 Tipo del documento: Article País de afiliación: Chile
...