Your browser doesn't support javascript.
loading
Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices.
Tagliabue, Giulia; Jermyn, Adam S; Sundararaman, Ravishankar; Welch, Alex J; DuChene, Joseph S; Pala, Ragip; Davoyan, Artur R; Narang, Prineha; Atwater, Harry A.
Afiliación
  • Tagliabue G; Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.
  • Jermyn AS; Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.
  • Sundararaman R; Institute of Astronomy, Cambridge University, Cambridge, CB3 0HA, UK.
  • Welch AJ; Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA.
  • DuChene JS; Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.
  • Pala R; Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.
  • Davoyan AR; Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.
  • Narang P; Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.
  • Atwater HA; Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.
Nat Commun ; 9(1): 3394, 2018 08 23.
Article en En | MEDLINE | ID: mdl-30140064
ABSTRACT
Harnessing photoexcited "hot" carriers in metallic nanostructures could define a new phase of non-equilibrium optoelectronics for photodetection and photocatalysis. Surface plasmons are considered pivotal for enabling efficient operation of hot carrier devices. Clarifying the fundamental role of plasmon excitation is therefore critical for exploiting their full potential. Here, we measure the internal quantum efficiency in photoexcited gold (Au)-gallium nitride (GaN) Schottky diodes to elucidate and quantify the distinct roles of surface plasmon excitation, hot carrier transport, and carrier injection in device performance. We show that plasmon excitation does not influence the electronic processes occurring within the hot carrier device. Instead, the metal band structure and carrier transport processes dictate the observed hot carrier photocurrent distribution. The excellent agreement with parameter-free calculations indicates that photoexcited electrons generated in ultra-thin Au nanostructures impinge ballistically on the Au-GaN interface, suggesting the possibility for hot carrier collection without substantial energy losses via thermalization.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos
...