Extreme physiological plasticity in a hibernating basoendothermic mammal, Tenrec ecaudatus.
J Exp Biol
; 221(Pt 20)2018 10 18.
Article
en En
| MEDLINE
| ID: mdl-30158129
Physiological plasticity allows organisms to respond to diverse conditions. However, can being too plastic actually be detrimental? Malagasy common tenrecs, Tenrec ecaudatus, have many plesiomorphic traits and may represent a basal placental mammal. We established a laboratory population of T. ecaudatus and found extreme plasticity in thermoregulation and metabolism, a novel hibernation form, variable annual timing, and remarkable growth and reproductive biology. For instance, tenrec body temperature (Tb) may approximate ambient temperature to as low as 12°C even when tenrecs are fully active. Conversely, tenrecs can hibernate with Tb of 28°C. During the active season, oxygen consumption may vary 25-fold with little or no change in Tb During the austral winter, tenrecs are consistently torpid but the depth of torpor may vary. A righting assay revealed that Tb contributes to but does not dictate activity status. Homeostatic processes are not always linked, e.g. a hibernating tenrec experienced a â¼34% decrease in heart rate while maintaining constant body temperature and oxygen consumption rates. Tenrec growth rates vary but young may grow â¼40-fold in the 5â
weeks until weaning and may possess indeterminate growth as adults. Despite all of this profound plasticity, tenrecs are surprisingly intolerant of extremes in ambient temperature (<8 or >34°C). We contend that while plasticity may confer numerous energetic advantages in consistently moderate environments, environmental extremes may have limited the success and distribution of plastic basal mammals.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Reproducción
/
Regulación de la Temperatura Corporal
/
Hibernación
/
Eulipotyphla
Límite:
Animals
Idioma:
En
Revista:
J Exp Biol
Año:
2018
Tipo del documento:
Article