Your browser doesn't support javascript.
loading
Ultrasonic-assisted synthesis of two dimensional BiOCl/MoS2 with tunable band gap and fast charge separation for enhanced photocatalytic performance under visible light.
Wu, Dapeng; Wang, Xiaolu; Wang, Hongju; Wang, Fujuan; Wang, Danqi; Gao, Zhiyong; Wang, Xinjun; Xu, Fang; Jiang, Kai.
Afiliación
  • Wu D; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China. Electronic address: dapen
  • Wang X; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
  • Wang H; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
  • Wang F; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China; School of Environment, He
  • Wang D; Swagelok Center for Surface Analysis of Materials, Case Western Reserve University, Cleveland, OH 44106, United States.
  • Gao Z; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
  • Wang X; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China. Electronic address: wxjtg
  • Xu F; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
  • Jiang K; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China; School of Environment, He
J Colloid Interface Sci ; 533: 539-547, 2019 Jan 01.
Article en En | MEDLINE | ID: mdl-30179832
Janus shaped BiOCl/MoS2 composites with two dimensional configuration are successfully prepared via a facile pulse ultrasonic assisted method, which spontaneously introduces oxygen vacancies on the BiOCl surface and builds well-defined heterojuction at the BiOCl/MoS2 interfaces. The as-prepared BiOCl/MoS2 composites possess reduced band gap and defect energy levels due to the incorporation of MoS2 and the oxygen vacancies, which permits the enhanced light harvesting efficiency in the visible range. In addition, because of the formed BiS bonds at the BiOCl/MoS2 interface, the composites demonstrate improved charge separation of the photo-generated carriers. Therefore, when used as photocatalyst for Rhodamine B photodegradation, the optimized composite demonstrates a degradation rate of 0.078 min-1, which is much enhanced compared with that of pure BiOCl (0.052 min-1). Mechanism investigation indicates the degradation is a hole mediated process. In addition, the composite shows good stability and outstanding organic carbon removal efficiency, which could serve as a promising photocatalyst for water remediation under visible light.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2019 Tipo del documento: Article
...