Your browser doesn't support javascript.
loading
Adjustment for covariates using summary statistics of genome-wide association studies.
Wang, Tao; Xue, Xiaonan; Xie, Xianhong; Ye, Kenny; Zhu, Xiaofeng; Elston, Robert C.
Afiliación
  • Wang T; Department of Epidemiology & Population Health, Albert Einstein College of Medicine, New York, New York.
  • Xue X; Department of Epidemiology & Population Health, Albert Einstein College of Medicine, New York, New York.
  • Xie X; Department of Epidemiology & Population Health, Albert Einstein College of Medicine, New York, New York.
  • Ye K; Department of Epidemiology & Population Health, Albert Einstein College of Medicine, New York, New York.
  • Zhu X; Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio.
  • Elston RC; Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio.
Genet Epidemiol ; 42(8): 812-825, 2018 12.
Article en En | MEDLINE | ID: mdl-30238496
Linear regression is a standard approach to identify genetic variants associated with continuous traits in genome-wide association studies (GWAS). In a standard epidemiology study, linear regression is often performed with adjustment for covariates to estimate the independent effect of a predictor variable or to improve statistical power by reducing residual variability. However, it is problematic to adjust for heritable covariates in genetic association analysis. Here, we propose a new method that utilizes summary statistics of the covariate from additional samples for reducing the residual variability and hence improves statistical power. Our simulation study showed that the proposed methodology can maintain a good control of Type I error and can achieve much higher power than a simple linear regression. The method is illustrated by an application to the GWAS results from the Genetic Investigation of Anthropometric Traits consortium.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estadística como Asunto / Estudio de Asociación del Genoma Completo Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Genet Epidemiol Asunto de la revista: EPIDEMIOLOGIA / GENETICA MEDICA Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estadística como Asunto / Estudio de Asociación del Genoma Completo Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Genet Epidemiol Asunto de la revista: EPIDEMIOLOGIA / GENETICA MEDICA Año: 2018 Tipo del documento: Article
...