Your browser doesn't support javascript.
loading
Characterization and application of microalgae hydrochar as a low-cost adsorbent for Cu(II) ion removal from aqueous solutions.
Saber, Mohammad; Takahashi, Fumitake; Yoshikawa, Kunio.
Afiliación
  • Saber M; Department of Environmental Science and Technology, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan. saber.m.aa@m.titech.ac.jp.
  • Takahashi F; Department of Environmental Science and Technology, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan.
  • Yoshikawa K; Department of Environmental Science and Technology, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan.
Environ Sci Pollut Res Int ; 25(32): 32721-32734, 2018 Nov.
Article en En | MEDLINE | ID: mdl-30244443
ABSTRACT
Hydrochar prepared from the hydrothermal liquefaction of microalgae is characterized and investigated for copper removal from aqueous solution. Two hydrochars were prepared at 210 °C (HD210) and 250 °C (HD250). The effect of the initial solution pH, the initial Cu(II) concentration, the contact time, and the temperature will be investigated. According to the elemental analysis, the volatile matter in the hydrochars was lower and ash content was higher than those of microalgae. Also, pore characteristic analysis revealed that the surface area of the HD250 was higher than that of the HD210 suggesting a higher potential for the adsorption process. FTIR analysis and Boehm titration showed that both hydrochars contained oxygen-containing functional groups (OFG) on the surface which were effective for the copper removal. The adsorption experiments indicated that the amount of copper adsorbed reached a maximum value at the pH of 5 which was considered as the optimum solution pH. In addition, HD250 had a higher amount of copper adsorption than that of HD210 at all values of the solution pH. The adsorption data at the optimum solution pH was well fitted by the Langmuir's isotherm model and the adsorption process could be well described by the pseudo-2nd order kinetic model. Moreover, thermodynamic analysis revealed that copper adsorption onto the hydrochar was a physical endothermic process.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 Problema de salud: 1_financiamento_saude Asunto principal: Contaminantes Químicos del Agua / Purificación del Agua / Cobre / Microalgas / Modelos Químicos Tipo de estudio: Health_economic_evaluation / Prognostic_studies Idioma: En Revista: Environ Sci Pollut Res Int Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 Problema de salud: 1_financiamento_saude Asunto principal: Contaminantes Químicos del Agua / Purificación del Agua / Cobre / Microalgas / Modelos Químicos Tipo de estudio: Health_economic_evaluation / Prognostic_studies Idioma: En Revista: Environ Sci Pollut Res Int Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: Japón
...