Your browser doesn't support javascript.
loading
Specificity of Primate Amygdalar Pathways to Hippocampus.
Wang, Jingyi; Barbas, Helen.
Afiliación
  • Wang J; Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 02215, and.
  • Barbas H; Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 02215, and barbas@bu.edu.
J Neurosci ; 38(47): 10019-10041, 2018 11 21.
Article en En | MEDLINE | ID: mdl-30249799
The amygdala projects to hippocampus in pathways through which affective or social stimuli may influence learning and memory. We investigated the still unknown amygdalar termination patterns and their postsynaptic targets in hippocampus from system to synapse in rhesus monkeys of both sexes. The amygdala robustly innervated the stratum lacunosum-moleculare layer of cornu ammonis fields and uncus anteriorly. Sparser terminations in posterior hippocampus innervated the radiatum and pyramidal layers at the prosubicular/CA1 juncture. The terminations, which were larger than other afferents in the surrounding neuropil, position the amygdala to influence hippocampal input anteriorly, and its output posteriorly. Most amygdalar boutons (76-80%) innervated spines of excitatory hippocampal neurons, and most of the remaining innervated presumed inhibitory neurons, identified by morphology and label with parvalbumin or calretinin, which distinguished nonoverlapping neurochemical classes of hippocampal inhibitory neurons. In CA1, amygdalar axons innervated some calretinin neurons, which disinhibit pyramidal neurons. By contrast, in CA3 the amygdala innervated both calretinin and parvalbumin neurons; the latter strongly inhibit nearby excitatory neurons. In CA3, amygdalar pathways also made closely spaced dual synapses on excitatory neurons. The strong excitatory synapses in CA3 may facilitate affective context representations and trigger sharp-wave ripples associated with memory consolidation. When the amygdala is excessively activated during traumatic events, the specialized innervation of excitatory neurons and the powerful parvalbumin inhibitory neurons in CA3 may allow the suppression of activity of nearby neurons that receive weaker nonamygdalar input, leading to biased passage of highly charged affective stimuli and generalized fear.SIGNIFICANCE STATEMENT Strong pathways from the amygdala targeted the anterior hippocampus, and more weakly its posterior sectors, positioned to influence a variety of emotional and cognitive functions. In hippocampal field CA1, the amygdala innervated some calretinin neurons, which disinhibit excitatory neurons. By contrast, in CA3 the amygdala innervated calretinin as well as some of the powerful parvalbumin inhibitory neurons and may help balance the activity of neural ensembles to allow social interactions, learning, and memory. These results suggest that when the amygdala is hyperactive during emotional upheaval, it strongly activates excitatory hippocampal neurons and parvalbumin inhibitory neurons in CA3, which can suppress nearby neurons that receive weaker input from other sources, biasing the passage of stimuli with high emotional import and leading to generalized fear.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hipocampo / Amígdala del Cerebelo / Red Nerviosa Límite: Animals Idioma: En Revista: J Neurosci Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hipocampo / Amígdala del Cerebelo / Red Nerviosa Límite: Animals Idioma: En Revista: J Neurosci Año: 2018 Tipo del documento: Article
...