Your browser doesn't support javascript.
loading
Biomechanical Heterogeneity of Living Cells: Comparison between Atomic Force Microscopy and Finite Element Simulation.
Tang, Guanlin; Galluzzi, Massimiliano; Zhang, Bokai; Shen, Yu-Lin; Stadler, Florian J.
Afiliación
  • Tang G; College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials , Shenzhen University , Shenzhen 518055 , PR China.
  • Galluzzi M; College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials , Shenzhen University , Shenzhen 518055 , PR China.
  • Zhang B; Shenzhen Key Laboratory of Nanobiomechanics , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , Guangdong , China.
  • Shen YL; CIMAINA and Dipartimento di Fisica , Università degli Studi di Milano , via Celoria 16 , 20133 Milano , Italy.
  • Stadler FJ; Shenzhen Key Laboratory of Nanobiomechanics , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , Guangdong , China.
Langmuir ; 35(23): 7578-7587, 2019 06 11.
Article en En | MEDLINE | ID: mdl-30272980
Atomic force microscopy (AFM) indentation is a popular method for characterizing the micromechanical properties of soft materials such as living cells. However, the mechanical data obtained from deep indentation measurements can be difficult and problematic to interpret as a result of the complex geometry of a cell, the nonlinearity of indentation contact, and constitutive relations of heterogeneous hyperelastic soft components. Living MDA-MB-231 cells were indented by spherical probes to obtain morphological and mechanical data that were adopted to build an accurate finite element model (FEM) for a parametric study. Initially, a 2D-axisymmetric numerical model was constructed with the main purpose of understanding the effect of geometrical and mechanical properties of constitutive parts such as the cell body, nucleus, and lamellipodium. A series of FEM deformation fields were directly compared with atomic force spectroscopy in order to resolve the mechanical convolution of heterogeneous parts and quantify Young's modulus and the geometry of nuclei. Furthermore, a 3D finite element model was constructed to investigate indentation events located far from the axisymmetric geometry. In this framework, the joint FEM/AFM approach has provided a useful methodology and a comprehensive characterization of the heterogeneous structure of living cells, emphasizing the deconvolution of geometrical structure and the true elastic modulus of the cell nucleus.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Microscopía de Fuerza Atómica / Análisis de Elementos Finitos / Fenómenos Mecánicos Límite: Humans Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Microscopía de Fuerza Atómica / Análisis de Elementos Finitos / Fenómenos Mecánicos Límite: Humans Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2019 Tipo del documento: Article
...