Your browser doesn't support javascript.
loading
Pyrimidinyl Biphenylureas Act as Allosteric Modulators to Activate Cannabinoid Receptor 1 and Initiate ß-Arrestin-Dependent Responses.
Jagla, Caitlin A D; Scott, Caitlin E; Tang, Yaliang; Qiao, Changjiang; Mateo-Semidey, Gabriel E; Yudowski, Guillermo A; Lu, Dai; Kendall, Debra A.
Afiliación
  • Jagla CAD; Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Ph
  • Scott CE; Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Ph
  • Tang Y; Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Ph
  • Qiao C; Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Ph
  • Mateo-Semidey GE; Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Ph
  • Yudowski GA; Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Ph
  • Lu D; Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Ph
  • Kendall DA; Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Ph
Mol Pharmacol ; 95(1): 1-10, 2019 01.
Article en En | MEDLINE | ID: mdl-30322873
Cannabinoid receptor 1 (CB1) is a G-protein-coupled receptor that is abundant in the central nervous system. It binds several compounds in its orthosteric site, including the endocannabinoids, arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol, and the plant-derived Δ9-tetrahydrocannabinol, one of the main psychoactive components of marijuana. It primarily couples to Gi/o proteins to inhibit adenylate cyclase activity and typically induces downstream signaling that is Gi-dependent. Since this receptor is implicated in several maladies, such as obesity, pain, and neurodegenerative disorders, there is interest in developing therapeutics that selectively target this receptor. Allosteric modulators of CB1 offer one new approach that has tremendous therapeutic potential. Here, we reveal receptor- and cellular-level properties consistent with receptor activation by a series of pyrimidinyl biphenylureas (LDK1285, LDK1288, LDK1305, and PSNCBAM1), including promoting binding of the agonist CP55940 with positive cooperativity and inhibiting binding of the inverse agonist SR141716A with negative cooperativity, demonstrated via radioligand binding studies. Consistent with these findings, the allosteric modulators induced cellular internalization of the receptor and recruitment of ß-arrestin 2 in human embryonic kidney cell line 293 cells monitored with confocal and total internal reflective fluorescence microscopy, respectively. These allosteric modulators, however, caused G-protein-independent but ß-arrestin 1-dependent phosphorylation of the downstream kinases extracellular signal-regulated kinase 1/2, mitogen-activated protein kinase, and Src, shown by immunoblotting studies. These results are consistent with the involvement of ß-arrestin and suggest that these allosteric modulators induce biased signaling.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Compuestos de Fenilurea / Receptor Cannabinoide CB1 / Regulación Alostérica / Beta-Arrestina 1 / Arrestina beta 2 Límite: Humans Idioma: En Revista: Mol Pharmacol Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Compuestos de Fenilurea / Receptor Cannabinoide CB1 / Regulación Alostérica / Beta-Arrestina 1 / Arrestina beta 2 Límite: Humans Idioma: En Revista: Mol Pharmacol Año: 2019 Tipo del documento: Article
...