A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films.
Nat Mater
; 17(12): 1095-1100, 2018 12.
Article
en En
| MEDLINE
| ID: mdl-30349031
Hafnia-based thin films are a favoured candidate for the integration of robust ferroelectricity at the nanoscale into next-generation memory and logic devices. This is because their ferroelectric polarization becomes more robust as the size is reduced, exposing a type of ferroelectricity whose mechanism still remains to be understood. Thin films with increased crystal quality are therefore needed. We report the epitaxial growth of Hf0.5Zr0.5O2 thin films on (001)-oriented La0.7Sr0.3MnO3/SrTiO3 substrates. The films, which are under epitaxial compressive strain and predominantly (111)-oriented, display large ferroelectric polarization values up to 34 µC cm-2 and do not need wake-up cycling. Structural characterization reveals a rhombohedral phase, different from the commonly reported polar orthorhombic phase. This finding, in conjunction with density functional theory calculations, allows us to propose a compelling model for the formation of the ferroelectric phase. In addition, these results point towards thin films of simple oxides as a vastly unexplored class of nanoscale ferroelectrics.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Nat Mater
Asunto de la revista:
CIENCIA
/
QUIMICA
Año:
2018
Tipo del documento:
Article
País de afiliación:
Países Bajos