Your browser doesn't support javascript.
loading
Biological activity of the implant for internal fixation.
Popkov, Arnold V; Popkov, Dimitry A; Kononovich, Natalia A; Gorbach, Elena N; Tverdokhlebov, Sergei I; Bolbasov, Evgeny N; Darvin, Evgeniy O.
Afiliación
  • Popkov AV; Scientific and Clinical Laboratory for Deformity Correction and Limb Lengthening, Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russia.
  • Popkov DA; Neuroorthopedic Clinic, Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russia.
  • Kononovich NA; Experimental Laboratory, Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russia.
  • Gorbach EN; Laboratory of Morphology, Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russia.
  • Tverdokhlebov SI; Department of Experimental Physics, Tomsk Polytechnic University (TPU), National Research Tomsk Polytechnic University, Tomsk, Russia.
  • Bolbasov EN; Department of Experimental Physics, Tomsk Polytechnic University (TPU), National Research Tomsk Polytechnic University, Tomsk, Russia.
  • Darvin EO; Orthopedic Department No 2, Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russia.
J Tissue Eng Regen Med ; 12(12): 2248-2255, 2018 12.
Article en En | MEDLINE | ID: mdl-30350395
ABSTRACT
Early treatment of bone fractures was performed using implants, which are often used in the form of plates of various types, which are fixed on the bone surface (extracellular fixation) and nails that are located in the medullary canal (intracerebral fixation). The goal of this study was to investigate the features of osseointegration of implants for internal fixation (intramedullary or extramedullary) with various bioactive coating techniques. During experimental study on 20 mongrel dogs, the implant model in the form of 1.0-mm plate made of titanium alloy (Ti6Al 4V) was placed in the medullary canal (first series) or under the periosteum (second series) the plates had bioactive coating (hydroxyapatite) produced using the technology of magnetron sputtering (six animals), plasma electrolytic oxidation or microarc oxidation technology (PEO; eight animals), and composite technology (six dogs). Anatomic and histological studies have shown that the process of active osseointegration of porous implants with bioactive coating begins after 7 days at first, granulation tissue - and then fibrous connective tissue - is formed; after 14 days, the osteogenic substrate can be found, and after 28 days, the entire implant area is covered by the lamellar bone tissue, which creates single implant-bone block. The most active formation of bone tissue is observed around implants with bioactive coating produced using the last two technologies. Low traumatic placement of porous implants with bioactive coating in the medullary canal or subperiosteally provides the stimulation of reparative osteogenesis and rapid (especially with PEO technique) osseointegration of the implant.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tibia / Fracturas de la Tibia / Placas Óseas / Implantes Experimentales / Materiales Biocompatibles Revestidos Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Animals Idioma: En Revista: J Tissue Eng Regen Med Asunto de la revista: BIOTECNOLOGIA / HISTOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: Rusia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tibia / Fracturas de la Tibia / Placas Óseas / Implantes Experimentales / Materiales Biocompatibles Revestidos Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Animals Idioma: En Revista: J Tissue Eng Regen Med Asunto de la revista: BIOTECNOLOGIA / HISTOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: Rusia
...