Your browser doesn't support javascript.
loading
Communication: Gas phase vibrational spectroscopy of the azide-water complex.
Kelly, John T; Ellington, Thomas L; Sexton, Thomas More; Fortenberry, Ryan C; Tschumper, Gregory S; Asmis, Knut R.
Afiliación
  • Kelly JT; Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universitat Leipzig, Linnéstraße 2, D-04103 Leipzig, Germany.
  • Ellington TL; Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, USA.
  • Sexton TM; Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, USA.
  • Fortenberry RC; Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, USA.
  • Tschumper GS; Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, USA.
  • Asmis KR; Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universitat Leipzig, Linnéstraße 2, D-04103 Leipzig, Germany.
J Chem Phys ; 149(19): 191101, 2018 Nov 21.
Article en En | MEDLINE | ID: mdl-30466274
The vibrational spectra of the azide-water complex, N3 -(H2O), and its fully deuterated isotopologue are studied using infrared photodissociation (IRPD) spectroscopy (800-3800 cm-1) and high-level ab initio computations. The IRPD spectrum of the H2-tagged complex exhibits four fundamental transitions at 3705, 3084, 2003, and 1660 cm-1, which are assigned to the free OH stretching, the hydrogen-bonded O-H stretching, the antisymmetric N3 stretching, and the water bending mode, respectively. The IRPD spectrum is consistent with a planar, singly hydrogen-bonded structure according to an MP2 and CCSD(T) anharmonic analysis via generalized second-order vibrational perturbation theory. The red-shift of the hydrogen-bonded OH stretching fundamental of 623 cm-1 associated with this structure is computed within 6 cm-1 (or 1%) and is used to estimate the proton affinity of azide (1410 kJ mol-1). Born-Oppenheimer molecular dynamics simulations show that large amplitude motions are responsible for the observed band broadening at cryogenic temperature. Temperature-dependent (6-300 K) IR multiphoton dissociation spectra of the untagged complex are also presented and discussed in the context of spectral diffusion observed in the condensed phase.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Phys Año: 2018 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Phys Año: 2018 Tipo del documento: Article País de afiliación: Alemania
...