Your browser doesn't support javascript.
loading
Structured illumination microscopy combined with machine learning enables the high throughput analysis and classification of virus structure.
Laine, Romain F; Goodfellow, Gemma; Young, Laurence J; Travers, Jon; Carroll, Danielle; Dibben, Oliver; Bright, Helen; Kaminski, Clemens F.
Afiliación
  • Laine RF; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom.
  • Goodfellow G; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom.
  • Young LJ; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom.
  • Travers J; MedImmune Ltd, Cambridge, United Kingdom.
  • Carroll D; Flu-BPD, MedImmune, Liverpool, United Kingdom.
  • Dibben O; Flu-BPD, MedImmune, Liverpool, United Kingdom.
  • Bright H; Flu-BPD, MedImmune, Liverpool, United Kingdom.
  • Kaminski CF; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom.
Elife ; 72018 12 13.
Article en En | MEDLINE | ID: mdl-30543181
Optical super-resolution microscopy techniques enable high molecular specificity with high spatial resolution and constitute a set of powerful tools in the investigation of the structure of supramolecular assemblies such as viruses. Here, we report on a new methodology which combines Structured Illumination Microscopy (SIM) with machine learning algorithms to image and classify the structure of large populations of biopharmaceutical viruses with high resolution. The method offers information on virus morphology that can ultimately be linked with functional performance. We demonstrate the approach on viruses produced for oncolytic viriotherapy (Newcastle Disease Virus) and vaccine development (Influenza). This unique tool enables the rapid assessment of the quality of viral production with high throughput obviating the need for traditional batch testing methods which are complex and time consuming. We show that our method also works on non-purified samples from pooled harvest fluids directly from the production line.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_cobertura_universal Asunto principal: Orthomyxoviridae / Virus de la Enfermedad de Newcastle / Aprendizaje Automático / Microscopía Fluorescente Idioma: En Revista: Elife Año: 2018 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_cobertura_universal Asunto principal: Orthomyxoviridae / Virus de la Enfermedad de Newcastle / Aprendizaje Automático / Microscopía Fluorescente Idioma: En Revista: Elife Año: 2018 Tipo del documento: Article País de afiliación: Reino Unido
...