A novel crosslinking protocol stabilizes amyloid ß oligomers capable of inducing Alzheimer's-associated pathologies.
J Neurochem
; 148(6): 822-836, 2019 03.
Article
en En
| MEDLINE
| ID: mdl-30565253
Amyloid ß oligomers (AßOs) accumulate early in Alzheimer's disease (AD) and experimentally cause memory dysfunction and the major pathologies associated with AD, for example, tau abnormalities, synapse loss, oxidative damage, and cognitive dysfunction. In order to develop the most effective AßO-targeting diagnostics and therapeutics, the AßO structures contributing to AD-associated toxicity must be elucidated. Here, we investigate the structural properties and pathogenic relevance of AßOs stabilized by the bifunctional crosslinker 1,5-difluoro-2,4-dinitrobenzene (DFDNB). We find that DFDNB stabilizes synthetic Aß in a soluble oligomeric conformation. With DFDNB, solutions of Aß that would otherwise convert to large aggregates instead yield solutions of stable AßOs, predominantly in the 50-300 kDa range, that are maintained for at least 12 days at 37°C. Structures were determined by biochemical and native top-down mass spectrometry analyses. Assayed in neuronal cultures and i.c.v.-injected mice, the DFDNB-stabilized AßOs were found to induce tau hyperphosphorylation, inhibit choline acetyltransferase, and provoke neuroinflammation. Most interestingly, DFDNB crosslinking was found to stabilize an AßO conformation particularly potent in inducing memory dysfunction in mice. Taken together, these data support the utility of DFDNB crosslinking as a tool for stabilizing pathogenic AßOs in structure-function studies.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Péptidos beta-Amiloides
/
Reactivos de Enlaces Cruzados
/
Enfermedad de Alzheimer
/
Neuronas
Tipo de estudio:
Risk_factors_studies
Límite:
Animals
/
Humans
Idioma:
En
Revista:
J Neurochem
Año:
2019
Tipo del documento:
Article
País de afiliación:
Estados Unidos