Star-Shaped Block Copolymers: Effective Polymer Gelators of High-Performance Gel Electrolytes for Electrochemical Devices.
ACS Appl Mater Interfaces
; 11(4): 4399-4407, 2019 Jan 30.
Article
en En
| MEDLINE
| ID: mdl-30624039
Ion gels composed of copolymers and ionic liquids (ILs) have attracted great interest as polymer gel electrolytes for various electrochemical applications. Here, we present highly robust ion gels based on a six-arm star-shaped block copolymer of (poly(methyl methacrylate)- b-polystyrene)6 ((MS)6) and an ionic liquid of 1-ethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide ([EMI][TFSI]). Compared to typical ion gels based on linear polystyrene- b-poly(methyl methacrylate)- b-polystyrene (SMS), the (MS)6-based gels show mechanical moduli of more than twice under various strains (e.g., stretching, compression, and shear). In addition, the outstanding mechanical property is maintained even up to 180 °C without a gel-sol transition. To demonstrate that (MS)6-based ion gels can serve as effective gel electrolytes for electrochemical applications, tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)32+), a representative electrochemiluminescent (ECL) luminophore, is incorporated into the gels. In particular, flexible ECL devices based on (MS)6 gels exhibit high durability against bending deformation compared to devices with gels based on linear SMS having a similar molecular weight and a composition. This result implies that star-shaped block copolymers are effective gelators for achieving flexible/wearable electrochemical electronics.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2019
Tipo del documento:
Article