Self-assembling vascular endothelial growth factor nanoparticles improve function in spinocerebellar ataxia type 1.
Brain
; 142(2): 312-321, 2019 02 01.
Article
en En
| MEDLINE
| ID: mdl-30649233
There is increasing appreciation for the role of the neurovascular unit in neurodegenerative diseases. We showed previously that the angiogenic and neurotrophic cytokine, vascular endothelial growth factor (VEGF), is suppressed to abnormally low levels in spinocerebellar ataxia type 1 (SCA1), and that replenishing VEGF reverses the cerebellar pathology in SCA1 mice. In that study, however, we used a recombinant VEGF, which is extremely costly to manufacture and biologically unstable as well as immunogenic. To develop a more viable therapy, here we test a synthetic VEGF peptide amphiphile that self-assembles into nanoparticles. We show that this nano-VEGF has potent neurotrophic and angiogenic properties, is well-tolerated, and leads to functional improvement in SCA1 mice even when administered at advanced stages of the disease. This approach can be generalized to other neurotrophic factors or molecules that act in a paracrine manner, offering a novel therapeutic strategy for neurodegenerative conditions.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Ataxias Espinocerebelosas
/
Factor A de Crecimiento Endotelial Vascular
/
Nanopartículas
Límite:
Adult
/
Animals
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
Brain
Año:
2019
Tipo del documento:
Article
País de afiliación:
Estados Unidos