Your browser doesn't support javascript.
loading
Algal Remodeling in a Ubiquitous Planktonic Photosymbiosis.
Decelle, Johan; Stryhanyuk, Hryhoriy; Gallet, Benoit; Veronesi, Giulia; Schmidt, Matthias; Balzano, Sergio; Marro, Sophie; Uwizeye, Clarisse; Jouneau, Pierre-Henri; Lupette, Josselin; Jouhet, Juliette; Maréchal, Eric; Schwab, Yannick; Schieber, Nicole L; Tucoulou, Rémi; Richnow, Hans; Finazzi, Giovanni; Musat, Niculina.
Afiliación
  • Decelle J; Helmholtz Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, 04318 Leipzig, Germany. Electronic address: johan.decelle@univ-grenoble-alpes.fr.
  • Stryhanyuk H; Helmholtz Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, 04318 Leipzig, Germany.
  • Gallet B; Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38044 Grenoble, France.
  • Veronesi G; Laboratoire de Chimie et Biologie des Métaux UMR 5249, Université Grenoble Alpes, CNRS, CEA, 17 Avenue des Martyrs, 38054 Grenoble, France; ESRF, The European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France.
  • Schmidt M; Helmholtz Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, 04318 Leipzig, Germany.
  • Balzano S; NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, PO Box 59, 1790 AB Den Burg, the Netherlands.
  • Marro S; Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire d'Océanographie de Villefranche UMR7093, Observatoire Océanologique, 06230 Villefranche-sur-Mer, France.
  • Uwizeye C; Cell & Plant Physiology Laboratory, University of Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
  • Jouneau PH; Institut Nanosciences et Cryogénie, Université Grenoble Alpes, CEA, 38054 Grenoble, France.
  • Lupette J; Cell & Plant Physiology Laboratory, University of Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
  • Jouhet J; Cell & Plant Physiology Laboratory, University of Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
  • Maréchal E; Cell & Plant Physiology Laboratory, University of Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
  • Schwab Y; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
  • Schieber NL; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
  • Tucoulou R; ESRF, The European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France.
  • Richnow H; Helmholtz Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, 04318 Leipzig, Germany.
  • Finazzi G; Cell & Plant Physiology Laboratory, University of Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
  • Musat N; Helmholtz Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, 04318 Leipzig, Germany.
Curr Biol ; 29(6): 968-978.e4, 2019 03 18.
Article en En | MEDLINE | ID: mdl-30827917
ABSTRACT
Photosymbiosis between single-celled hosts and microalgae is common in oceanic plankton, especially in oligotrophic surface waters. However, the functioning of this ecologically important cell-cell interaction and the subcellular mechanisms allowing the host to accommodate and benefit from its microalgae remain enigmatic. Here, using a combination of quantitative single-cell structural and chemical imaging techniques (FIB-SEM, nanoSIMS, Synchrotron X-ray fluorescence), we show that the structural organization, physiology, and trophic status of the algal symbionts (the haptophyte Phaeocystis) significantly change within their acantharian hosts compared to their free-living phase in culture. In symbiosis, algal cell division is blocked, photosynthesis is enhanced, and cell volume is increased by up to 10-fold with a higher number of plastids (from 2 to up to 30) and thylakoid membranes. The multiplication of plastids can lead to a 38-fold increase of the total plastid volume in a cell. Subcellular mapping of nutrients (nitrogen and phosphorous) and their stoichiometric ratios shows that symbiotic algae are impoverished in phosphorous and suggests a higher investment in energy-acquisition machinery rather than in growth. Nanoscale imaging also showed that the host supplies a substantial amount of trace metals (e.g., iron and cobalt), which are stored in algal vacuoles at high concentrations (up to 660 ppm). Sulfur mapping reveals a high concentration in algal vacuoles that may be a source of antioxidant molecules. Overall, this study unveils an unprecedented morphological and metabolic transformation of microalgae following their integration into a host, and it suggests that this widespread symbiosis is a farming strategy wherein the host engulfs and exploits microalgae.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simbiosis / Rhizaria / Haptophyta Idioma: En Revista: Curr Biol Asunto de la revista: BIOLOGIA Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simbiosis / Rhizaria / Haptophyta Idioma: En Revista: Curr Biol Asunto de la revista: BIOLOGIA Año: 2019 Tipo del documento: Article
...