Your browser doesn't support javascript.
loading
Characterization of PM2.5-bound polycyclic aromatic hydrocarbons and their derivatives (nitro-and oxy-PAHs) emissions from two ship engines under different operating conditions.
Zhao, Jingbo; Zhang, Yanjie; Wang, Ting; Sun, Luna; Yang, Zhiwen; Lin, Yingchao; Chen, Yunyue; Mao, Hongjun.
Afiliación
  • Zhao J; Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
  • Zhang Y; Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
  • Wang T; Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China. Electronic address: wangting@nankai.edu.c
  • Sun L; Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
  • Yang Z; Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
  • Lin Y; Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
  • Chen Y; Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin, 300457, China.
  • Mao H; Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China. Electronic address: hongjun_mao@hotmail.c
Chemosphere ; 225: 43-52, 2019 Jun.
Article en En | MEDLINE | ID: mdl-30856474
ABSTRACT
Emissions from ship exhaust have been recognized as an important source of air pollution in coastal areas. To investigate the impacts of engine type, fuel and operating conditions on polycyclic aromatic compounds (PACs) emissions, particle matter (PM2.5) samples emitted from an inland-river bulk freighter (BF) using marine diesel oil (MDO) and an ocean-going passenger vessel (PV) using heavy fuel oil (HFO) were collected under five operation conditions (preheating, leaving, cruising, entering and berthing). The concentrations of 17 polycyclic aromatic hydrocarbons (PAHs), 12 nitro-PAHs (NPAHs) and 4 oxygenated-PAHs species were determined. The concentrations of ΣPAHs, ΣNPAHs and ΣOPAHs measured on the BF and PV exhausts ranged from 1.95 to 417 µg/m3, 86.5 to 6.89 × 103 ng/m3 and 2.00-102 µg/m3, respectively. Both ships showed a high proportion of four-ring PAHs, while the BF had more three-ring PAHs (34.00-70.38%) and the PV had more five-ring PAHs (30.02-35.95%). The calculation of indicatory PACs are able to increase the precision of source appointment. The emission factors (EFs) of PACs under maneuvering (including preheating, leaving, entering and berthing) was much higher than those under cruising, which might be due to the engine load, fuel consumption, and secondary reactions. Compared with HFO, combustion with MDO decreased the power-based ΣPAH EFs by 82-99%, power-based ΣNPAH EFs by 86-98%, and power-based ΣOPAHs EFs by 50-82%. These data highlight the importance of quantifying and monitoring ship emissions in close proximity to port area, and are useful for enhancing the relevant databases and improving the accuracy of ship emission inventories.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_quimicos_contaminacion Asunto principal: Hidrocarburos Policíclicos Aromáticos / Navíos / Emisiones de Vehículos / Monitoreo del Ambiente / Material Particulado Idioma: En Revista: Chemosphere Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_quimicos_contaminacion Asunto principal: Hidrocarburos Policíclicos Aromáticos / Navíos / Emisiones de Vehículos / Monitoreo del Ambiente / Material Particulado Idioma: En Revista: Chemosphere Año: 2019 Tipo del documento: Article País de afiliación: China
...