Your browser doesn't support javascript.
loading
Mechano growth factor attenuates mechanical overload-induced nucleus pulposus cell apoptosis through inhibiting the p38 MAPK pathway.
Xu, Qing; Fang, Haolin; Zhao, Liang; Zhang, Cunxin; Zhang, Luo; Tian, Baofang.
Afiliación
  • Xu Q; Department of Anesthesia Surgery, Jining NO. 1 People's Hospital, Affiliated Jining NO. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China.
  • Fang H; Department of Emergency Trauma Surgery, Jining NO. 1 People's Hospital, Affiliated Jining NO. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China.
  • Zhao L; Department of Emergency Trauma Surgery, Jining NO. 1 People's Hospital, Affiliated Jining NO. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China.
  • Zhang C; Department of Spine Surgery, Jining NO. 1 People's Hospital, Affiliated Jining NO. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China.
  • Zhang L; Department of Emergency Trauma Surgery, Jining NO. 1 People's Hospital, Affiliated Jining NO. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China.
  • Tian B; Department of Emergency Trauma Surgery, Jining NO. 1 People's Hospital, Affiliated Jining NO. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China baofangtian1976@126.com.
Biosci Rep ; 39(3)2019 03 29.
Article en En | MEDLINE | ID: mdl-30858307
ABSTRACT
Mechanical overload is a risk factor of disc degeneration. It can induce disc degeneration through mediating cell apoptosis. Mechano growth factor (MGF) has been reported to inhibit mechanical overload-induced apoptosis of chondrocytes. The present study is aimed to investigate whether MGF can attenuate mechanical overload-induced nucleus pulposus (NP) cell apoptosis and the possible signaling transduction pathway. Rat NP cells were cultured and subjected to mechanical overload for 7 days. The control NP cells did not experience mechanical load. The exogenous MGF peptide was added into the culture medium to investigate its protective effects. NP cell apoptosis ratio, caspase-3 activity, gene expression of Bcl-2, Bax and caspase-3, protein expression of cleaved caspase-3, cleaved PARP, Bax and Bcl-2 were analyzed to evaluate NP cell apoptosis. In addition, activity of the p38 MAPK pathway was also detected. Compared with the control NP cells, mechanical overload significantly increased NP cell apoptosis and caspase-3 activity, up-regulated gene/protein expression of pro-apoptosis molecules (i.e. Bax, caspase-3, cleaved caspase-3 and cleaved PARP) whereas down-regulated gene/protein expression of anti-apoptosis molecule (i.e. Bcl-2). However, exogenous MGF partly reversed these effects of mechanical overload on NP cell apoptosis. Further results showed that activity of the p38 MAPK pathway of NP cells cultured under mechanical overload was decreased by addition of MGF peptide. In conclusion, MGF is able to attenuate mechanical overload-induced NP cell apoptosis, and the p38 MAPK signaling pathway may be involved in this process. The present study provides that MGF supplementation may be a promising strategy to retard mechanical overload-induced disc degeneration.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estrés Mecánico / Factor I del Crecimiento Similar a la Insulina / Apoptosis / Sistema de Señalización de MAP Quinasas / Núcleo Pulposo Tipo de estudio: Risk_factors_studies Límite: Animals Idioma: En Revista: Biosci Rep Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estrés Mecánico / Factor I del Crecimiento Similar a la Insulina / Apoptosis / Sistema de Señalización de MAP Quinasas / Núcleo Pulposo Tipo de estudio: Risk_factors_studies Límite: Animals Idioma: En Revista: Biosci Rep Año: 2019 Tipo del documento: Article País de afiliación: China
...