Multiscale time-resolved fluorescence study of a glycogen phosphorylase inhibitor combined with quantum chemistry calculations.
Phys Chem Chem Phys
; 21(14): 7685-7696, 2019 Apr 03.
Article
en En
| MEDLINE
| ID: mdl-30912774
A fluorescence study of N1-(ß-d-glucopyranosyl)-N4-[2-acridin-9(10H)-onyl]-cytosine (GLAC), the first fluorescent potent inhibitor of glycogen phosphorylase (GP), in neutral aqueous solution, is presented herein. Quantum chemistry (TD-DFT) calculations show the existence of several conformers both in the ground and first excited states. They result from rotations of the acridone and cytosine moieties around an NH bridge which may lead to the formation of non-emitting charge-transfer states. The fingerprints of various conformers have been detected by time-resolved fluorescence spectroscopy (fluorescence upconversion and time-correlated single photon counting) and identified using as criteria their energy, polarization and relative population resulting from computations. Such an analysis should contribute to the design of new GP inhibitors with better fluorescence properties, suitable for imaging applications.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Teoría Cuántica
/
Glucógeno Fosforilasa
/
Inhibidores Enzimáticos
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Phys Chem Chem Phys
Asunto de la revista:
BIOFISICA
/
QUIMICA
Año:
2019
Tipo del documento:
Article
País de afiliación:
Francia