Your browser doesn't support javascript.
loading
Cosolvent-Enhanced Sampling and Unbiased Identification of Cryptic Pockets Suitable for Structure-Based Drug Design.
Schmidt, Denis; Boehm, Markus; McClendon, Christopher L; Torella, Rubben; Gohlke, Holger.
Afiliación
  • Schmidt D; Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie , Heinrich-Heine-Universität Düsseldorf , 40225 Düsseldorf , Germany.
  • Boehm M; Medicinal Sciences , Pfizer Inc. , Cambridge , Massachusetts 02139 , United States.
  • McClendon CL; Medicinal Sciences , Pfizer Inc. , Cambridge , Massachusetts 02139 , United States.
  • Torella R; Medicinal Sciences , Pfizer Inc. , Cambridge , Massachusetts 02139 , United States.
  • Gohlke H; Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie , Heinrich-Heine-Universität Düsseldorf , 40225 Düsseldorf , Germany.
J Chem Theory Comput ; 15(5): 3331-3343, 2019 May 14.
Article en En | MEDLINE | ID: mdl-30998331
ABSTRACT
Modulating protein activity with small-molecules binding to cryptic pockets offers great opportunities to overcome hurdles in drug design. Cryptic sites are atypical binding sites in proteins that are closed in the absence of a stabilizing ligand and are thus inherently difficult to identify. Many studies have proposed methods to predict cryptic sites. However, a general approach to prospectively sample open conformations of these sites and to identify cryptic pockets in an unbiased manner suitable for structure-based drug design remains elusive. Here, we describe an all-atom, explicit cosolvent, molecular dynamics (MD) simulations-based workflow to sample the open states of cryptic sites and identify opened pockets, in a manner that does not require a priori knowledge about these sites. Furthermore, the workflow relies on a target-independent parametrization that only distinguishes between binding pockets for peptides or small molecules. We validated our approach on a diverse test set of seven proteins with crystallographically determined cryptic sites. The known cryptic sites were found among the three highest-ranked predicted cryptic sites, and an open site conformation was sampled and selected for most of the systems. Crystallographic ligand poses were well reproduced by docking into these identified open conformations for five of the systems. When the fully open state could not be reproduced, we were still able to predict the location of the cryptic site, or identify other cryptic sites that could be retrospectively validated with knowledge of the protein target. These characteristics render our approach valuable for investigating novel protein targets without any prior information.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diseño de Fármacos / Proteínas / Simulación de Dinámica Molecular Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: J Chem Theory Comput Año: 2019 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diseño de Fármacos / Proteínas / Simulación de Dinámica Molecular Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: J Chem Theory Comput Año: 2019 Tipo del documento: Article País de afiliación: Alemania
...