Your browser doesn't support javascript.
loading
Entropic effects enable life at extreme temperatures.
Kim, Young Hun; Leriche, Geoffray; Diraviyam, Karthik; Koyanagi, Takaoki; Gao, Kaifu; Onofrei, David; Patterson, Joseph; Guha, Anirvan; Gianneschi, Nathan; Holland, Gregory P; Gilson, Michael K; Mayer, Michael; Sept, David; Yang, Jerry.
Afiliación
  • Kim YH; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
  • Leriche G; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
  • Diraviyam K; Department of Biomedical Engineering, Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
  • Koyanagi T; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
  • Gao K; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
  • Onofrei D; Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
  • Patterson J; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
  • Guha A; Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, Switzerland.
  • Gianneschi N; Departments of Chemistry, Materials Science and Engineering, and Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.
  • Holland GP; Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
  • Gilson MK; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
  • Mayer M; Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, Switzerland.
  • Sept D; Department of Biomedical Engineering, Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
  • Yang J; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
Sci Adv ; 5(5): eaaw4783, 2019 05.
Article en En | MEDLINE | ID: mdl-31049402
ABSTRACT
Maintaining membrane integrity is a challenge at extreme temperatures. Biochemical synthesis of membrane-spanning lipids is one adaptation that organisms such as thermophilic archaea have evolved to meet this challenge and preserve vital cellular function at high temperatures. The molecular-level details of how these tethered lipids affect membrane dynamics and function, however, remain unclear. Using synthetic monolayer-forming lipids with transmembrane tethers, here, we reveal that lipid tethering makes membrane permeation an entropically controlled process that helps to limit membrane leakage at elevated temperatures relative to bilayer-forming lipid membranes. All-atom molecular dynamics simulations support a view that permeation through membranes made of tethered lipids reduces the torsional entropy of the lipids and leads to tighter lipid packing, providing a molecular interpretation for the increased transition-state entropy of leakage.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Permeabilidad de la Membrana Celular / Archaea / Entropía / Calor / Membrana Dobles de Lípidos Idioma: En Revista: Sci Adv Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Permeabilidad de la Membrana Celular / Archaea / Entropía / Calor / Membrana Dobles de Lípidos Idioma: En Revista: Sci Adv Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos
...