Your browser doesn't support javascript.
loading
Identification of Essential 2D and 3D Chemical Features for Discovery of the Novel Tubulin Polymerization Inhibitors.
Azimi, Fateme; Ghasemi, Jahan B; Saghaei, Lotfollah; Hassanzadeh, Farshid; Mahdavi, Mohammad; Sadeghi-Aliabadi, Hojjat; Scotti, Marcus T; Scotti, Luciana.
Afiliación
  • Azimi F; Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
  • Ghasemi JB; Department of Chemistry, Faculty of Sciences, University of Tehran, Tehran, Iran.
  • Saghaei L; Department of Chemistry, Faculty of Sciences, University of Tehran, Tehran, Iran.
  • Hassanzadeh F; Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
  • Mahdavi M; Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
  • Sadeghi-Aliabadi H; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
  • Scotti MT; Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
  • Scotti L; Federal University of Paraiba, Health Sciences Center, Campus I, Joao Pessoa, PB, Brazil.
Curr Top Med Chem ; 19(13): 1092-1120, 2019.
Article en En | MEDLINE | ID: mdl-31109275
ABSTRACT

BACKGROUND:

Tubulin polymerization inhibitors interfere with microtubule assembly and their functions lead to mitotic arrest, therefore they are attractive target for design and development of novel anticancer compounds.

OBJECTIVE:

The proposed novel and effective structures following the use of three-dimensionalquantitative structure activity relationship (3D-QSAR) pharmacophore based virtual screening clearly demonstrate the high efficiency of this method in modern drug discovery.

METHODS:

Combined computational approach was applied to extract the essential 2D and 3D features requirements for higher activity as well as identify new anti-tubulin agents.

RESULTS:

The best quantitative pharmacophore model, Hypo1, exhibited good correlation of 0.943 (RMSD=1.019) and excellent predictive power in the training set compounds. Generated model AHHHR, was well mapped to colchicine site and three-dimensional spatial arrangement of their features were in good agreement with the vital interactions in the active site. Total prediction accuracy (0.92 for training set and 0.86 for test set), enrichment factor (4.2 for training set and 4.5 for test set) and the area under the ROC curve (0.86 for training set and 0.94 for the test set), the developed model using Extended Class FingerPrints of maximum diameter 4 (ECFP_4) was chosen as the best model.

CONCLUSION:

Developed computational platform provided a better understanding of requirement features for colchicine site inhibitors and we believe the results of this study might be useful for the rational design and optimization of new inhibitors.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tubulina (Proteína) / Colchicina / Relación Estructura-Actividad Cuantitativa / Moduladores de Tubulina / Descubrimiento de Drogas / Antineoplásicos Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Curr Top Med Chem Asunto de la revista: QUIMICA Año: 2019 Tipo del documento: Article País de afiliación: Irán

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tubulina (Proteína) / Colchicina / Relación Estructura-Actividad Cuantitativa / Moduladores de Tubulina / Descubrimiento de Drogas / Antineoplásicos Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Curr Top Med Chem Asunto de la revista: QUIMICA Año: 2019 Tipo del documento: Article País de afiliación: Irán
...