Your browser doesn't support javascript.
loading
Genomic prediction of maize yield across European environmental conditions.
Millet, Emilie J; Kruijer, Willem; Coupel-Ledru, Aude; Alvarez Prado, Santiago; Cabrera-Bosquet, Llorenç; Lacube, Sébastien; Charcosset, Alain; Welcker, Claude; van Eeuwijk, Fred; Tardieu, François.
Afiliación
  • Millet EJ; Biometris, WUR, Wageningen, the Netherlands.
  • Kruijer W; LEPSE, INRA, Université Montpellier, SupAgro, Montpellier, France.
  • Coupel-Ledru A; Biometris, WUR, Wageningen, the Netherlands.
  • Alvarez Prado S; Biometris, WUR, Wageningen, the Netherlands.
  • Cabrera-Bosquet L; LEPSE, INRA, Université Montpellier, SupAgro, Montpellier, France.
  • Lacube S; University of Bristol, School of Biological Sciences, Bristol, UK.
  • Charcosset A; LEPSE, INRA, Université Montpellier, SupAgro, Montpellier, France.
  • Welcker C; IFEVA and CONICET, Buenos Aires, Argentina.
  • van Eeuwijk F; LEPSE, INRA, Université Montpellier, SupAgro, Montpellier, France.
  • Tardieu F; LEPSE, INRA, Université Montpellier, SupAgro, Montpellier, France.
Nat Genet ; 51(6): 952-956, 2019 06.
Article en En | MEDLINE | ID: mdl-31110353
The development of germplasm adapted to changing climate is required to ensure food security1,2. Genomic prediction is a powerful tool to evaluate many genotypes but performs poorly in contrasting environmental scenarios3-7 (genotype × environment interaction), in spite of promising results for flowering time8. New avenues are opened by the development of sensor networks for environmental characterization in thousands of fields9,10. We present a new strategy for germplasm evaluation under genotype × environment interaction. Yield was dissected in grain weight and number and genotype × environment interaction in these components was modeled as genotypic sensitivity to environmental drivers. Environments were characterized using genotype-specific indices computed from sensor data in each field and the progression of phenology calibrated for each genotype on a phenotyping platform. A whole-genome regression approach for the genotypic sensitivities led to accurate prediction of yield under genotype × environment interaction in a wide range of environmental scenarios, outperforming a benchmark approach.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fenotipo / Genoma de Planta / Zea mays / Genómica / Agricultura / Ambiente Tipo de estudio: Prognostic_studies / Risk_factors_studies País/Región como asunto: Europa Idioma: En Revista: Nat Genet Asunto de la revista: GENETICA MEDICA Año: 2019 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fenotipo / Genoma de Planta / Zea mays / Genómica / Agricultura / Ambiente Tipo de estudio: Prognostic_studies / Risk_factors_studies País/Región como asunto: Europa Idioma: En Revista: Nat Genet Asunto de la revista: GENETICA MEDICA Año: 2019 Tipo del documento: Article País de afiliación: Países Bajos
...