Your browser doesn't support javascript.
loading
Comprehensive assessment of multiple biases in small RNA sequencing reveals significant differences in the performance of widely used methods.
Wright, Carrie; Rajpurohit, Anandita; Burke, Emily E; Williams, Courtney; Collado-Torres, Leonardo; Kimos, Martha; Brandon, Nicholas J; Cross, Alan J; Jaffe, Andrew E; Weinberger, Daniel R; Shin, Joo Heon.
Afiliación
  • Wright C; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
  • Rajpurohit A; AstraZeneca Postdoc Program, Innovative Medicines and Early Development Biotech Unit, Cambridge, MA, 01239, USA.
  • Burke EE; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
  • Williams C; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
  • Collado-Torres L; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
  • Kimos M; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
  • Brandon NJ; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
  • Cross AJ; AstraZeneca Neuroscience, Innovative Medicines and Early Development Biotech Unit, Cambridge, MA, 01239, USA.
  • Jaffe AE; AstraZeneca Neuroscience, Innovative Medicines and Early Development Biotech Unit, Cambridge, MA, 01239, USA.
  • Weinberger DR; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
  • Shin JH; Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.
BMC Genomics ; 20(1): 513, 2019 Jun 21.
Article en En | MEDLINE | ID: mdl-31226924
BACKGROUND: RNA sequencing offers advantages over other quantification methods for microRNA (miRNA), yet numerous biases make reliable quantification challenging. Previous evaluations of these biases have focused on adapter ligation bias with limited evaluation of reverse transcription bias or amplification bias. Furthermore, evaluations of the quantification of isomiRs (miRNA isoforms) or the influence of starting amount on performance have been very limited. No study had yet evaluated the quantification of isomiRs of altered length or compared the consistency of results derived from multiple moderate starting inputs. We therefore evaluated quantifications of miRNA and isomiRs using four library preparation kits, with various starting amounts, as well as quantifications following removal of duplicate reads using unique molecular identifiers (UMIs) to mitigate reverse transcription and amplification biases. RESULTS: All methods resulted in false isomiR detection; however, the adapter-free method tested was especially prone to false isomiR detection. We demonstrate that using UMIs improves accuracy and we provide a guide for input amounts to improve consistency. CONCLUSIONS: Our data show differences and limitations of current methods, thus raising concerns about the validity of quantification of miRNA and isomiRs across studies. We advocate for the use of UMIs to improve accuracy and reliability of miRNA quantifications.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Análisis de Secuencia de ARN Tipo de estudio: Evaluation_studies / Prognostic_studies Límite: Animals / Humans Idioma: En Revista: BMC Genomics Asunto de la revista: GENETICA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Análisis de Secuencia de ARN Tipo de estudio: Evaluation_studies / Prognostic_studies Límite: Animals / Humans Idioma: En Revista: BMC Genomics Asunto de la revista: GENETICA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos
...