Your browser doesn't support javascript.
loading
In Silico Prediction of PAMPA Effective Permeability Using a Two-QSAR Approach.
Chi, Cheng-Ting; Lee, Ming-Han; Weng, Ching-Feng; Leong, Max K.
Afiliación
  • Chi CT; Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan.
  • Lee MH; Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan.
  • Weng CF; Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan.
  • Leong MK; Department of Basic Medical Science, Center for Transitional Medicine, Xiamen Medical College, Xiamen 361023, China.
Int J Mol Sci ; 20(13)2019 Jun 28.
Article en En | MEDLINE | ID: mdl-31261723
Oral administration is the preferred and predominant route of choice for medication. As such, drug absorption is one of critical drug metabolism and pharmacokinetics (DM/PK) parameters that should be taken into consideration in the process of drug discovery and development. The cell-free in vitro parallel artificial membrane permeability assay (PAMPA) has been adopted as the primary screening to assess the passive diffusion of compounds in the practical applications. A classical quantitative structure-activity relationship (QSAR) model and a machine learning (ML)-based QSAR model were derived using the partial least square (PLS) scheme and hierarchical support vector regression (HSVR) scheme to elucidate the underlying passive diffusion mechanism and to predict the PAMPA effective permeability, respectively, in this study. It was observed that HSVR executed better than PLS as manifested by the predictions of the samples in the training set, test set, and outlier set as well as various statistical assessments. When applied to the mock test, which was designated to mimic real challenges, HSVR also showed better predictive performance. PLS, conversely, cannot cover some mechanistically interpretable relationships between descriptors and permeability. Accordingly, the synergy of predictive HSVR and interpretable PLS models can be greatly useful in facilitating drug discovery and development by predicting passive diffusion.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador / Permeabilidad de la Membrana Celular / Relación Estructura-Actividad Cuantitativa / Absorción Fisiológica Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Int J Mol Sci Año: 2019 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador / Permeabilidad de la Membrana Celular / Relación Estructura-Actividad Cuantitativa / Absorción Fisiológica Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Int J Mol Sci Año: 2019 Tipo del documento: Article País de afiliación: Taiwán
...