Your browser doesn't support javascript.
loading
Development of a periodontitis risk assessment model for primary care providers in an interdisciplinary setting.
Shimpi, Neel; McRoy, Susan; Zhao, Huimin; Wu, Min; Acharya, Amit.
Afiliación
  • Shimpi N; University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
  • McRoy S; Center for Oral and Systemic Health, Marshfield Clinic Research Institute, Marshfield, WI, USA.
  • Zhao H; University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
  • Wu M; University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
  • Acharya A; University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
Technol Health Care ; 28(2): 143-154, 2020.
Article en En | MEDLINE | ID: mdl-31282445
BACKGROUND: Periodontitis (PD), a form of gum disease, is a major public health concern as it is globally prevalent and harms both individual quality of life and economic productivity. Global cost in lost productivity is estimated at US$54 billion annually. Moreover, current PD assessment applies only after the damage has already occurred. OBJECTIVE: This study proposes and tests a new PD risk assessment model applicable at point-of-care, using supervised machine learning methods. METHODS: We compare the performance of five algorithms using retrospective clinical data: Naïve Bayes (NB), Logistic Regression (LR), Support Vector Machine (SVM), Artificial Neural Network (ANN), and Decision Tree (DT). RESULTS: DT and ANN demonstrated higher accuracy in classifying the patients with high or low PD risk as compared to NB, LR and SVM. The resultant model with DT showed a sensitivity of 87.08% (95% CI 84.12% to 89.76%) and specificity of 93.5% (95% CI 91% to 95.49%). CONCLUSIONS: A predictive model with high sensitivity and specificity to stratify individuals into low and high PD risk tiers was developed. Validation in other populations will inform translational value of this approach and its potential applicability as clinical decision support tool.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 11_ODS3_cobertura_universal / 1_ASSA2030 Problema de salud: 11_delivery_arrangements / 11_multisectoral_coordination / 1_sistemas_informacao_saude Asunto principal: Periodontitis / Atención Primaria de Salud / Inteligencia Artificial / Sistemas de Apoyo a Decisiones Clínicas Tipo de estudio: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Aspecto: Equity_inequality / Patient_preference Límite: Adult / Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Revista: Technol Health Care Asunto de la revista: ENGENHARIA BIOMEDICA / SERVICOS DE SAUDE Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 11_ODS3_cobertura_universal / 1_ASSA2030 Problema de salud: 11_delivery_arrangements / 11_multisectoral_coordination / 1_sistemas_informacao_saude Asunto principal: Periodontitis / Atención Primaria de Salud / Inteligencia Artificial / Sistemas de Apoyo a Decisiones Clínicas Tipo de estudio: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Aspecto: Equity_inequality / Patient_preference Límite: Adult / Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Revista: Technol Health Care Asunto de la revista: ENGENHARIA BIOMEDICA / SERVICOS DE SAUDE Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos
...