Your browser doesn't support javascript.
loading
Faster speciation of fig-wasps than their host figs leads to decoupled speciation dynamics: Snapshots across the speciation continuum.
Souto-Vilarós, Daniel; Machac, Antonin; Michalek, Jan; Darwell, Clive Terence; Sisol, Mentap; Kuyaiva, Thomas; Isua, Brus; Weiblen, George D; Novotny, Vojtech; Segar, Simon T.
Afiliación
  • Souto-Vilarós D; Faculty of Science, University of South Bohemia, Ceské Budejovice, Czech Republic.
  • Machac A; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceské Budejovice, Czech Republic.
  • Michalek J; Center for Theoretical Study, Charles University and Czech Academy of Sciences, Prague, Czech Republic.
  • Darwell CT; Department of Ecology, Charles University, Prague, Czech Republic.
  • Sisol M; Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
  • Kuyaiva T; Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
  • Isua B; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceské Budejovice, Czech Republic.
  • Weiblen GD; Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
  • Novotny V; New Guinea Binatang Research Centre, Madang, Papua New Guinea.
  • Segar ST; New Guinea Binatang Research Centre, Madang, Papua New Guinea.
Mol Ecol ; 28(17): 3958-3976, 2019 09.
Article en En | MEDLINE | ID: mdl-31338917
ABSTRACT
Even though speciation involving multiple interacting partners, such as plants and their pollinators, has attracted much research, most studies focus on isolated phases of the process. This currently precludes an integrated understanding of the mechanisms leading to cospeciation. Here, we examine population genetic structure across six species-pairs of figs and their pollinating wasps along an elevational gradient in New Guinea. Specifically, we test three hypotheses on the genetic structure within the examined species-pairs and find that the hypothesized genetic structures represent different phases of a single continuum, from incipient cospeciation to the full formation of new species. Our results also illuminate the mechanisms governing cospeciation, namely that fig wasps tend to accumulate population genetic differences faster than their figs, which initially decouples the speciation dynamics between the two interacting partners and breaks down their one-to-one matching. This intermediate phase is followed by genetic divergence of both partners, which may eventually restore the one-to-one matching among the fully formed species. Together, these findings integrate current knowledge on the mechanisms operating during different phases of the cospeciation process. They also reveal that the increasingly reported breakdowns in one-to-one matching may be an inherent part of the cospeciation process. Mechanistic understanding of this process is needed to explain how the extraordinary diversity of species, especially in the tropics, has emerged. Knowing which breakdowns in species interactions are a natural phase of cospeciation and which may endanger further generation of diversity seems critical in a constantly changing world.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Avispas / Ficus / Especiación Genética / Interacciones Huésped-Patógeno Límite: Animals Idioma: En Revista: Mol Ecol Asunto de la revista: BIOLOGIA MOLECULAR / SAUDE AMBIENTAL Año: 2019 Tipo del documento: Article País de afiliación: República Checa

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Avispas / Ficus / Especiación Genética / Interacciones Huésped-Patógeno Límite: Animals Idioma: En Revista: Mol Ecol Asunto de la revista: BIOLOGIA MOLECULAR / SAUDE AMBIENTAL Año: 2019 Tipo del documento: Article País de afiliación: República Checa
...