Your browser doesn't support javascript.
loading
NAD+ consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival.
Murata, Michael M; Kong, Xiangduo; Moncada, Emmanuel; Chen, Yumay; Imamura, Hiromi; Wang, Ping; Berns, Michael W; Yokomori, Kyoko; Digman, Michelle A.
Afiliación
  • Murata MM; Department of Biomedical Engineering, School of Engineering, University of California, Irvine, Irvine, CA 92697.
  • Kong X; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697.
  • Moncada E; Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA 92697.
  • Chen Y; Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA 92697.
  • Imamura H; UC Irvine Diabetes Center, University of California, Irvine, Irvine, CA 92697.
  • Wang P; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
  • Berns MW; Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA 92697.
  • Yokomori K; UC Irvine Diabetes Center, University of California, Irvine, Irvine, CA 92697.
  • Digman MA; Department of Biomedical Engineering, School of Engineering, University of California, Irvine, Irvine, CA 92697.
Mol Biol Cell ; 30(20): 2584-2597, 2019 09 15.
Article en En | MEDLINE | ID: mdl-31390283
ABSTRACT
DNA damage signaling is critical for the maintenance of genome integrity and cell fate decision. Poly(ADP-ribose) polymerase 1 (PARP1) is a DNA damage sensor rapidly activated in a damage dose- and complexity-dependent manner playing a critical role in the initial chromatin organization and DNA repair pathway choice at damage sites. However, our understanding of a cell-wide consequence of its activation in damaged cells is still limited. Using the phasor approach to fluorescence lifetime imaging microscopy and fluorescence-based biosensors in combination with laser microirradiation, we found a rapid cell-wide increase of the bound NADH fraction in response to nuclear DNA damage, which is triggered by PARP-dependent NAD+ depletion. This change is linked to the metabolic balance shift to oxidative phosphorylation (oxphos) over glycolysis. Inhibition of oxphos, but not glycolysis, resulted in parthanatos due to rapid PARP-dependent ATP deprivation, indicating that oxphos becomes critical for damaged cell survival. The results reveal the novel prosurvival response to PARP activation through a change in cellular metabolism and demonstrate how unique applications of advanced fluorescence imaging and laser microirradiation-induced DNA damage can be a powerful tool to interrogate damage-induced metabolic changes at high spatiotemporal resolution in a live cell.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Daño del ADN / Reparación del ADN / Poli(ADP-Ribosa) Polimerasa-1 / NAD Límite: Humans Idioma: En Revista: Mol Biol Cell Asunto de la revista: BIOLOGIA MOLECULAR Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Daño del ADN / Reparación del ADN / Poli(ADP-Ribosa) Polimerasa-1 / NAD Límite: Humans Idioma: En Revista: Mol Biol Cell Asunto de la revista: BIOLOGIA MOLECULAR Año: 2019 Tipo del documento: Article
...