Your browser doesn't support javascript.
loading
Motion robust respiratory-resolved 3D radial flow MRI and its application in neonatal congenital heart disease.
Schrauben, Eric M; Lim, Jessie Mei; Goolaub, Datta Singh; Marini, Davide; Seed, Mike; Macgowan, Christopher K.
Afiliación
  • Schrauben EM; Translational Medicine, Hospital for Sick Children, Toronto, Canada.
  • Lim JM; Physiology, University of Toronto, Toronto, Canada.
  • Goolaub DS; Translational Medicine, Hospital for Sick Children, Toronto, Canada.
  • Marini D; Medical Biophysics, University of Toronto, Toronto, Canada.
  • Seed M; Hospital for Sick Children, Toronto, Canada.
  • Macgowan CK; Division of Cardiology, Hospital for Sick Children, Toronto, Canada.
Magn Reson Med ; 83(2): 535-548, 2020 02.
Article en En | MEDLINE | ID: mdl-31464030
PURPOSE: To test and implement a motion-robust and respiratory-resolved 3D Radial Flow framework that addresses the need for rapid, high resolution imaging in neonatal patients with congenital heart disease. METHODS: A 4-point velocity encoding and 3D radial trajectory with double-golden angle ordering was combined with bulk motion correction (from projection center of mass) and respiration phase detection (from principal component analysis of heartbeat-averaged data) to create motion-robust 3D velocity cardiac time-averaged data. This framework was tested in a whole-chest digital phantom with simulated bulk and realistic physiological motion. In vivo imaging was performed in 20 congenital heart disease infants under feed-and-sleep with submillimeter isotropic resolution in ~3 min. Flows were validated against clinical 2D PCMRI and whole-heart visualizations of blood flow were performed. RESULTS: The proposed framework resolved all simulated digital phantom motion states (mean ± standard error: rotation - azimuthal = 0.29 ± 0.02°; translation - Ty = 1.29 ± 0.12 mm, Tz = -0.27 ± 0.13 mm; rotation+translation - polar = 0.49 ± 0.16°, Tx = -2.47 ± 0.51 mm, Tz = 5.78 ± 1.33 mm). Measured timing errors of peak expiration across all signal-to-noise ratio values were 22% of the true respiratory period (range = [404-489 ± 298-334] ms). For in vivo imaging, motion correction improved 3D Radial Flow measurements (no correction: R2 = 0.62, root mean square error = 0.80 L/min/m2 , Bland-Altman bias [limits of agreement] = -0.21 [-1.40, 0.94] L/min/m2 ; motion corrected, expiration: R2 = 0.90, root mean square error = 0.46 L/min/m2 , bias [limits of agreement] = 0.06 [-0.49, 0.62] L/min/m2 ). Respiratory-resolved 3D velocity visualizations were achieved in various neonatal pathologies pre- and postsurgical correction. CONCLUSION: 3D cardiac flow may be visualized and accurately quantified in neonatal subjects using the proposed framework. This technique may enable more comprehensive hemodynamic studies in small infants.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Imagenología Tridimensional / Cardiopatías Congénitas / Movimiento (Física) / Neonatología Tipo de estudio: Prognostic_studies Límite: Female / Humans / Infant / Male / Newborn Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2020 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Imagenología Tridimensional / Cardiopatías Congénitas / Movimiento (Física) / Neonatología Tipo de estudio: Prognostic_studies Límite: Female / Humans / Infant / Male / Newborn Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2020 Tipo del documento: Article País de afiliación: Canadá
...