Your browser doesn't support javascript.
loading
Transcriptome of 17ß-hydroxysteroid dehydrogenase type 2 plays both hormone-dependent and hormone-independent roles in MCF-7 breast cancer cells.
Zhang, Chen-Yan; Calvo, Ezequiel-Luis; Yang, Chang-Qing; Liu, Jie; Sang, Xiao-Ye; Lin, Sheng-Xiang.
Afiliación
  • Zhang CY; Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China; Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Resea
  • Calvo EL; Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Québec G1V 4G2, Canada.
  • Yang CQ; Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
  • Liu J; Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
  • Sang XY; Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Québec G1V 4G2, Canada.
  • Lin SX; Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Québec G1V 4G2, Canada. Electronic address: Sheng-Xiang.Lin@crchul.ulaval.ca.
J Steroid Biochem Mol Biol ; 195: 105471, 2019 12.
Article en En | MEDLINE | ID: mdl-31513846
Breast cancer is a major cause of cancer-related death for women in western countries. 17ß-Hydroxysteroid dehydrogenases (17ß-HSDs) play important roles in the last step of sex-hormone activation and the first step of sex-hormone inactivation. 17ß-HSD2 is responsible for oxidizing the sex hormones. We used microarray technology to analyze the effect of 17ß-HSD2 on the MCF-7 cell transcript profile after knocking down 17ß-HSD2. Five hundred forty-two genes were regulated 1.5-fold or higher after treatment with 17ß-HSD2 siRNA. Knocking down 17ß-HSD2 interrupted nucleosome assembly. Pathway-Act-Network analysis showed that the MAPK and apoptosis signaling pathways were most regulated. In the gene-gene interaction network analysis, UGT2B15, which is involved in hormone metabolism, was the most regulated core gene. FOS, GREB1, and CXCL12 were the most regulated genes, and CXCL12 was related to tumor migration. Following 17ß-HSD2 knock-down, the cell viability decreased to 75.9%. The S-phase percentage decreased by 19.4%, the Q2-phase percentage in cell apoptosis testing increased by 1.5 times, and cell migration decreased to 66.0%. These results were consistent with our gene chip analysis and indicated that 17ß-HSD2 plays both hormone-dependent and hormone-independent enzymatic roles. In-depth investigations of this enzyme on the genomic level will help clarify its related molecular mechanisms.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias de la Mama / Estradiol Deshidrogenasas / Transcriptoma Límite: Humans Idioma: En Revista: J Steroid Biochem Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias de la Mama / Estradiol Deshidrogenasas / Transcriptoma Límite: Humans Idioma: En Revista: J Steroid Biochem Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA Año: 2019 Tipo del documento: Article
...