Your browser doesn't support javascript.
loading
Continuous monitoring of adenosine and its metabolites using microdialysis coupled to microchip electrophoresis with amperometric detection.
Gunawardhana, Shamal M; Lunte, Susan M.
Afiliación
  • Gunawardhana SM; Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA.
  • Lunte SM; Department of Chemistry, University of Kansas, Lawrence, KS, USA.
Anal Methods ; 10(30): 3737-3744, 2018 Aug 14.
Article en En | MEDLINE | ID: mdl-31579297
ABSTRACT
Rapid monitoring of concentration changes of neurotransmitters and energy metabolites is important for understanding the biochemistry of neurological disease as well as for developing therapeutic options. This paper describes the development of a separation-based sensor using microchip electrophoresis (ME) with electrochemical (EC) detection coupled to microdialysis (MD) sampling for continuous on-line monitoring of adenosine and its downstream metabolites. The device was fabricated completely in PDMS. End-channel electrochemical detection was accomplished using a carbon fiber working electrode embedded in the PDMS. The separation conditions for adenosine, inosine, hypoxanthine, and guanosine were investigated using a ME-EC chip with a 5-cm long separation channel. The best resolution was achieved using a background electrolyte consisting of 35 mM sodium borate at pH 10, 15% dimethyl sulfoxide (DMSO), and 2 mM sodium dodecyl sulphate (SDS), and a field strength of 222 V/cm. Under these conditions, all four purines were separated in less than 85 s. Using a working electrode detection potential of 1.4 vs Ag/AgCl, the limits of detection were 25, 33, 10, and 25 µM for adenosine, inosine, hypoxanthine, and guanosine, respectively. The ME-EC chip was then coupled to microdialysis sampling using a novel all-PDMS microdialysis-microchip interface that was reversibly sealed. This made alignment of the working electrode with the end of the separation channel much easier and more reproducible than could be obtained with previous MD-ME-EC systems. The integrated device was then used to monitor the enzymatic conversion of adenosine to inosine in vitro.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Anal Methods Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Anal Methods Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos
...