Your browser doesn't support javascript.
loading
Efficient gene correction of an aberrant splice site in ß-thalassaemia iPSCs by CRISPR/Cas9 and single-strand oligodeoxynucleotides.
Xiong, Zeyu; Xie, Yingjun; Yang, Yi; Xue, Yanting; Wang, Ding; Lin, Shouheng; Chen, Diyu; Lu, Dian; He, Lina; Song, Bing; Yang, Yinghong; Sun, Xiaofang.
Afiliación
  • Xiong Z; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
  • Xie Y; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
  • Yang Y; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
  • Xue Y; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
  • Wang D; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
  • Lin S; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
  • Chen D; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
  • Lu D; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
  • He L; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
  • Song B; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
  • Yang Y; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
  • Sun X; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
J Cell Mol Med ; 23(12): 8046-8057, 2019 12.
Article en En | MEDLINE | ID: mdl-31631510
ABSTRACT
ß-thalassaemia is a prevalent hereditary haematological disease caused by mutations in the human haemoglobin ß (HBB) gene. Among them, the HBB IVS2-654 (C > T) mutation, which is in the intron, creates an aberrant splicing site. Bone marrow transplantation for curing ß-thalassaemia is limited due to the lack of matched donors. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), as a widely used tool for gene editing, is able to target specific sequence and create double-strand break (DSB), which can be combined with the single-stranded oligodeoxynucleotide (ssODN) to correct mutations. In this study, according to two different strategies, the HBB IVS2-654 mutation was seamlessly corrected in iPSCs by CRISPR/Cas9 system and ssODN. To reduce the occurrence of secondary cleavage, a more efficient strategy was adopted. The corrected iPSCs kept pluripotency and genome stability. Moreover, they could differentiate normally. Through CRISPR/Cas9 system and ssODN, our study provides improved strategies for gene correction of ß-Thalassaemia, and the expression of the HBB gene can be restored, which can be used for gene therapy in the future.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oligodesoxirribonucleótidos / Empalme del ARN / Talasemia beta / Globinas beta / Células Madre Pluripotentes Inducidas / Sistemas CRISPR-Cas / Edición Génica Límite: Humans Idioma: En Revista: J Cell Mol Med Asunto de la revista: BIOLOGIA MOLECULAR Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oligodesoxirribonucleótidos / Empalme del ARN / Talasemia beta / Globinas beta / Células Madre Pluripotentes Inducidas / Sistemas CRISPR-Cas / Edición Génica Límite: Humans Idioma: En Revista: J Cell Mol Med Asunto de la revista: BIOLOGIA MOLECULAR Año: 2019 Tipo del documento: Article País de afiliación: China
...