Your browser doesn't support javascript.
loading
All-FIT: allele-frequency-based imputation of tumor purity from high-depth sequencing data.
Loh, Jui Wan; Guccione, Caitlin; Di Clemente, Frances; Riedlinger, Gregory; Ganesan, Shridar; Khiabanian, Hossein.
Afiliación
  • Loh JW; Center for Systems and Computational Biology, Rutgers University, New Brunswick, NJ, USA.
  • Guccione C; Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
  • Di Clemente F; Graduate Program in Microbiology and Molecular Genetics, Rutgers University, Piscataway, NJ, USA.
  • Riedlinger G; Center for Systems and Computational Biology, Rutgers University, New Brunswick, NJ, USA.
  • Ganesan S; Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
  • Khiabanian H; Center for Systems and Computational Biology, Rutgers University, New Brunswick, NJ, USA.
Bioinformatics ; 36(7): 2173-2180, 2020 04 01.
Article en En | MEDLINE | ID: mdl-31750888
SUMMARY: Clinical sequencing aims to identify somatic mutations in cancer cells for accurate diagnosis and treatment. However, most widely used clinical assays lack patient-matched control DNA and additional analysis is needed to distinguish somatic and unfiltered germline variants. Such computational analyses require accurate assessment of tumor cell content in individual specimens. Histological estimates often do not corroborate with results from computational methods that are primarily designed for normal-tumor matched data and can be confounded by genomic heterogeneity and presence of sub-clonal mutations. Allele-frequency-based imputation of tumor (All-FIT) is an iterative weighted least square method to estimate specimen tumor purity based on the allele frequencies of variants detected in high-depth, targeted, clinical sequencing data. Using simulated and clinical data, we demonstrate All-FIT's accuracy and improved performance against leading computational approaches, highlighting the importance of interpreting purity estimates based on expected biology of tumors. AVAILABILITY AND IMPLEMENTATION: Freely available at http://software.khiabanian-lab.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Secuenciación de Nucleótidos de Alto Rendimiento / Neoplasias Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Secuenciación de Nucleótidos de Alto Rendimiento / Neoplasias Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos
...