Your browser doesn't support javascript.
loading
Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy.
Weiss, Rebecca J; Bates, Sara V; Song, Ya'nan; Zhang, Yue; Herzberg, Emily M; Chen, Yih-Chieh; Gong, Maryann; Chien, Isabel; Zhang, Lily; Murphy, Shawn N; Gollub, Randy L; Grant, P Ellen; Ou, Yangming.
Afiliación
  • Weiss RJ; Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
  • Bates SV; Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
  • Song Y; Fetal Neonatal Neuroimaging and Developmental Science Center (FNNDSC), Boston Children's Hospital, Harvard Medical School, 401 Park Drive, Landmark Center 7022, Boston, MA, 02115, USA.
  • Zhang Y; Fetal Neonatal Neuroimaging and Developmental Science Center (FNNDSC), Boston Children's Hospital, Harvard Medical School, 401 Park Drive, Landmark Center 7022, Boston, MA, 02115, USA.
  • Herzberg EM; Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
  • Chen YC; Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
  • Gong M; Computer Science & Artificial Intelligence Lab (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
  • Chien I; Computer Science & Artificial Intelligence Lab (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
  • Zhang L; Computer Science & Artificial Intelligence Lab (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
  • Murphy SN; Laboratory of Computer Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
  • Gollub RL; Department of Psychiatry and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
  • Grant PE; Fetal Neonatal Neuroimaging and Developmental Science Center (FNNDSC), Boston Children's Hospital, Harvard Medical School, 401 Park Drive, Landmark Center 7022, Boston, MA, 02115, USA. Ellen.Grant@childrens.harvard.edu.
  • Ou Y; Neuroradiology Division, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA. Ellen.Grant@childrens.harvard.edu.
J Transl Med ; 17(1): 385, 2019 11 21.
Article en En | MEDLINE | ID: mdl-31752923
BACKGROUND: Secondary and retrospective use of hospital-hosted clinical data provides a time- and cost-efficient alternative to prospective clinical trials for biomarker development. This study aims to create a retrospective clinical dataset of Magnetic Resonance Images (MRI) and clinical records of neonatal hypoxic ischemic encephalopathy (HIE), from which clinically-relevant analytic algorithms can be developed for MRI-based HIE lesion detection and outcome prediction. METHODS: This retrospective study will use clinical registries and big data informatics tools to build a multi-site dataset that contains structural and diffusion MRI, clinical information including hospital course, short-term outcomes (during infancy), and long-term outcomes (~ 2 years of age) for at least 300 patients from multiple hospitals. DISCUSSION: Within machine learning frameworks, we will test whether the quantified deviation from our recently-developed normative brain atlases can detect abnormal regions and predict outcomes for individual patients as accurately as, or even more accurately, than human experts. Trial Registration Not applicable. This study protocol mines existing clinical data thus does not meet the ICMJE definition of a clinical trial that requires registration.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Biomarcadores / Hipoxia-Isquemia Encefálica / Aprendizaje Automático Tipo de estudio: Clinical_trials / Guideline / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans / Newborn Idioma: En Revista: J Transl Med Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Biomarcadores / Hipoxia-Isquemia Encefálica / Aprendizaje Automático Tipo de estudio: Clinical_trials / Guideline / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans / Newborn Idioma: En Revista: J Transl Med Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos
...