Your browser doesn't support javascript.
loading
Visualizing structure and transitions in high-dimensional biological data.
Moon, Kevin R; van Dijk, David; Wang, Zheng; Gigante, Scott; Burkhardt, Daniel B; Chen, William S; Yim, Kristina; Elzen, Antonia van den; Hirn, Matthew J; Coifman, Ronald R; Ivanova, Natalia B; Wolf, Guy; Krishnaswamy, Smita.
Afiliación
  • Moon KR; Department of Mathematics and Statistics, Utah State University, Logan, UT, USA.
  • van Dijk D; Cardiovascular Research Center, section Cardiology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
  • Wang Z; Department of Computer Science, Yale University, New Haven, CT, USA.
  • Gigante S; School of Basic Medicine, Qingdao University, Qingdao, China.
  • Burkhardt DB; Yale Stem Cell Center, Department of Genetics, Yale University, New Haven, CT, USA.
  • Chen WS; Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA.
  • Yim K; Department of Genetics, Yale University, New Haven, CT, USA.
  • Elzen AVD; Department of Genetics, Yale University, New Haven, CT, USA.
  • Hirn MJ; Department of Genetics, Yale University, New Haven, CT, USA.
  • Coifman RR; Department of Genetics, Yale University, New Haven, CT, USA.
  • Ivanova NB; Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA.
  • Wolf G; Department of Mathematics, Michigan State University, East Lansing, MI, USA.
  • Krishnaswamy S; Applied Mathematics Program, Yale University, New Haven, CT, USA.
Nat Biotechnol ; 37(12): 1482-1492, 2019 12.
Article en En | MEDLINE | ID: mdl-31796933
ABSTRACT
The high-dimensional data created by high-throughput technologies require visualization tools that reveal data structure and patterns in an intuitive form. We present PHATE, a visualization method that captures both local and global nonlinear structure using an information-geometric distance between data points. We compare PHATE to other tools on a variety of artificial and biological datasets, and find that it consistently preserves a range of patterns in data, including continual progressions, branches and clusters, better than other tools. We define a manifold preservation metric, which we call denoised embedding manifold preservation (DEMaP), and show that PHATE produces lower-dimensional embeddings that are quantitatively better denoised as compared to existing visualization methods. An analysis of a newly generated single-cell RNA sequencing dataset on human germ-layer differentiation demonstrates how PHATE reveals unique biological insight into the main developmental branches, including identification of three previously undescribed subpopulations. We also show that PHATE is applicable to a wide variety of data types, including mass cytometry, single-cell RNA sequencing, Hi-C and gut microbiome data.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 3_ND Problema de salud: 3_zoonosis Asunto principal: Procesamiento de Imagen Asistido por Computador / Genómica / Ensayos Analíticos de Alto Rendimiento Límite: Animals / Humans Idioma: En Revista: Nat Biotechnol Asunto de la revista: BIOTECNOLOGIA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 3_ND Problema de salud: 3_zoonosis Asunto principal: Procesamiento de Imagen Asistido por Computador / Genómica / Ensayos Analíticos de Alto Rendimiento Límite: Animals / Humans Idioma: En Revista: Nat Biotechnol Asunto de la revista: BIOTECNOLOGIA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos
...